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Abstract

We investigate the equilibrium market structure in virtual platform
duopoly such as that of eBay and Yahoo! auctions. Building on the
model of Ellison, Fudenberg, & Möbius (2004) we take full account of the
complexity of network e¤ects on such platforms. We extend the model by
looking at the implication of exogenous and endogenous buyer and seller
charges (i.e. vertical product di¤erentiation) making use of the concept
of insulating tari¤s. This extension brings in line the theory with the
empirical �ndings of Brown & Morgan (2006). Eventually we investigate
welfare e¤ects, look at the viability of duopoly with size di¤erentials, and
the implications for large markets and policy.

1 Introduction

Virtual market platforms such as auctions often reveal very di¤erent price strate-
gies despite the fact that such intermediaries o¤er homogenous products. Com-
petition between eBay vs. Yahoo! auctions are a case in point with Yahoo!
having substantially lower fees and commissions than eBay both in the US and
in Japan. Despite these similarities markets were eventually dominated by eBay
in the US and by Yahoo! in Japan (see Yin (2004)). One explanation for this
observation is the presence of network externalities.

Intermediation between heterogenous agents such as bargaining buyers and
sellers generates direct, �congestion�externalities (from agents of their own type)
and indirect network externalities (from agents of the other type). This complex
interaction of network externalities often remains unmodelled an exception being
the work of Ellison, Fudenberg, and Möbius (EFM, 2004).

1 I am grateful for comments by Matthias Blonski, Thomas Gall, Dominik Grafenhofer,
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The analysis in EFM shows that stable equilibria in such duopoly markets
exist and that they may be asymmetric. The consequences of asymmetry for op-
timal platform pricing strategies are however not pursued. Competitive pricing
decisions are studied by Caillaud and Jullien (2001, 2003) albeit in a contin-
uum model with homogenous agents on both sides of the platform focusing on
indirect network externalities only.

Recently the implications of the EFM framework for platform competition
have been investigated in Brown and Morgan (2009). In their extension of
the EFM model they look at exogenous vertical platform di¤erentiation. One
of their �ndings (see Proposition 4 in their paper), is that given eBay is the
dominant platform and provides an exogenous vertical di¤erentiation advantage
to sellers, 1) more buyers are attracted to a given Yahoo! auction than an eBay
auction, and 2) prices for the traded goods are higher on Yahoo! than on eBay.
The authors note that both predictions are exactly contradicted by their evidence
from �eld experiments. As an alternative they o¤er a dynamic disequilibrium
model with boundedly rational players that will eventually lead to �tipping�.

In this paper we are o¤ering a more parsimonious extension of EFM that is
in accordance with equilibrium coexistence taking di¤erences in seller charges
into account. This extension is empirically warranted as eBay has almost always
been the more expensive platform for sellers in practice, charging listing fees and
commissions. However treating pricing/vertical di¤erentiation as exogenous is
clearly not fully satisfactory in the context of competing platforms either.

We thus investigate the e¤ects of endogenous seller charges on the equilib-
rium market structure. Making use of the equilibrium concept of "insulating
tari¤s" for competition in two-sides markets put forward in Weyl (2010) for
monopoly and White and Weyl (2011) for oligopoly we �nd optimal pricing de-
cisions of platforms that target allocations. Such charges re�ect the potentially
asymmetric market shares of buyers and sellers on each platform and we show
that our extensions are su¢ cient to explain the empirical evidence in Brown
and Morgan (2009) and allows for long run equilibrium coexistence.

We are also able to tighten the set of equilibria compared to EFM and
show that, contrary to the original model, endogenizing seller charges allows for
coexistence of platforms with arbitrarily small numbers of participants.

and especially Alex White as well as participants of the �Two-sided Markets� Seminar at
Universität Frankfurt, and INTERTIC Milan. Financial support of the PREMIUM project
of the BMBF is gratefully acknowledged. Author e-mail: s.behringer@gmx.de.
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2 The Model

We model the duopolistic platform competition departing from a simple two-
stage game presented in EFM (2004).

The timing of the game is as follows: In the �rst stage B risk-neutral buyers
(B 2 N0) with unit demand and S risk-neutral sellers (S 2 N0) with a single
unit of the good to sell simultaneously decide whether to attend platform 1 or
platform 2. In the second stage they learn their valuations that are uniformly
i.i.d. distributed and bargaining for the object takes place. We model this
bargain as a uniform price (multiobject if S > 1) auction on each platform.
By the revenue equivalence theorem this choice of the bargaining process is
quite general. Each buyer only demands one homogeneous good. In order to
guarantee strictly positive prices we make the �non-triviality assumption�that

B > S + 1 (1)

for both being positive integers. Risk neutral sellers have zero reservation value
and their expected utility is given by the expected price on their chosen platform.
A buyer�s utility on a platform with B buyers and S sellers is given by his
expected net utility conditional on winning the good i.e.

uB = E
�
v � vS+1;B

�� v � vS;B	Pr�v � vS;B	 (2)

where vk;n gives the k highest order statistic of a draw of n values and thus in
this auction format the uniform price is simply the S + 1 highest of the buyers
valuations vS+1;B (i.e. the highest losing bid). This is the typical mathematical
convention as long as we deal with a discrete model.

Larger markets are more e¢ cient than smaller ones as they come closer to
the ex-post e¢ cient outcome to allocate a good to a buyer i¤ his valuation is
high. The ex-post e¢ cient outcome implies that the buyers with the S highest
values obtain the good, so that the expectation of the maximum total ex-ante
surplus (welfare) is

B Pr
�
v � vS;B

	
E
�
vj v � vS;B

	
= SE

�
vj v � vS;B

	
=

SE
�
vj v > vS+1;B

	
= S

Z 1

0

�Z 1

x

vf(v jv > x )dv)
�
fS+1;B(x)dx (3)

where fS+1;B is the density function of vS+1;B ; the S+1 highest order statistic
of a draw of B values under the uniform distribution.

Lemma 0 (EFM):

Under the uniform distribution total welfare on one platform can be written
as the sum of buyer and seller utilities

w(B;S) = S(1� 1
2

1 + S

B + 1
) = S

�
B � S
B + 1

�
+B

�
S(1 + S)

2B(B + 1)

�
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Proof:
See Appendix.�

The result is intuitive: The total value of a sale is E
�
vj v > vS+1;B

	
;

i.e. expected value of v given v > p: Under the uniform distribution this
is 1 � 1

2
1+S
B+1 = p + 1�p

2 : Clearly the second term is the value for one buyer
E
�
v � vS+1;B

�� v > vS+1;B	 = 1�p
2 with the remaining p (as calculated above)

going to the seller and to obtain total welfare we multiply with the number of
sales.

Note that

@w(1; SB = �x < 1)

@B
=
1

2
�x
(2� �x)(B + 2)B + 1

(B + 1)
2 > 0 (4)

showing that for constant shares of sellers to buyers larger markets are more
e¢ cient than smaller ones. The e¢ ciency de�cit makes it more di¢ cult for small
markets to survive but the sequential structure of the game allows for equilibria
with two active platforms whenever the impact of switching of buyer and/or
seller on his expected surplus more than outweighs the e¢ ciency advantage.

The game is solved by backward induction and the solution concept is Sub-
game Perfect Nash equilibrium (SPNE). The transaction of the good in stage
two yields ex-ante utility in stage one for a seller of

uS(B;S) = p =
B � S
B + 1

(5)

and for a potential buyer of

uB(B;S) =
1� p
2

S

B
=

S(1 + S)

2B(1 +B)
: (6)

Note that holding S=B (the relative advantages of buyers and sellers) con-
stant, sellers prefer larger, more liquid markets (where the expected equilibrium
price is higher) and buyers prefer small, less e¢ cient markets as

@uS(1;
S
B = �x < 1)

@B
=
@p(1; SB = �x < 1)

@B
> 0 (7)

and
@uB(1;

S
B = �x < 1)

@B
< 0 (8)

Extending the setting of EFM we assume that platforms can charge buyers
and/or sellers some fee for participating. Without loss of generality we assume
that such a fee takes a non-negative value.
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As buyers and sellers simultaneously decide which platform to join in stage
one, we can set up the relevant constraints that determine the set of all possible
SPNE of the game subject to the quali�cation that the integer constraint holds.
Otherwise we will speak of a quasi-equilibrium. This restriction is investigated
in detail in Anderson, Ellison and Fudenberg (2010). The constraints to keep
buyers in place in stage one given buyer charge di¤erence p2B � p1B � �B � 0
are (B1)

uB(B1; S1) � uB(B2 + 1; S2)��B (9)

and (B2)

uB(B2; S2)��B � uB(B1 + 1; S1) (10)

In words: A buyer on platform 1 needs to have an expected utility from the
bargaining stage correcting for charges paid to the platform owner such that a
change to the other platform and the implied e¤ect on the equilibrium bargain-
ing outcome there deters him from doing so.

To keep sellers in place in stage one given seller charge di¤erence �S � 0 we
need (S1)

uS(B1; S1) � uS(B2; S2 + 1)��S (11)

and (S2)

uS(B2; S2)��S � uB(B1; S1 + 1) (12)

to hold. The motivation for the constraints is analogous. Clearly these con-
straints matter only for interior equilibria.
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3 Exogenous buyer charges

We now look explicitly at the form of the constraints and thus at the set of
possible SPNE with some exogenous charge di¤erences �B > 0 to (winning)
buyers in auction two. Note that this does not imply that charges are made
only by one of the platforms but only that it is the di¤erence between such
charges that in�uence location incentives.

Denoting s as the share of sellers on platform one and � as the share of
buyers at platform one the buyer constraint (9) becomes

sS(1 + sS)

2�B(1 + �B)
� (1� s)S(1 + (1� s)S)
2((1� �)B + 1)(1 + (1� �)B + 1) ��B (13)

and (B2) is

(1� s)S(1 + (1� s)S)
2(1� �)B(1 + (1� �)B) ��B �

sS(1 + sS)

2(�B + 1)(1 + �B + 1)
(14)

A numerical example (with B = 10; S = 5) may make clear how the buyer
constraints change. The two buyer constraints with �B = 0 and �B = 0:3 are:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ß

s

where the share of sellers on platform one (s) is on the ordinate and the share
of buyers on platform one (�) is on the abscissa.

The interpretation of this �nding is as follows: The lower (B1) constraint
gives the condition that buyers stay on platform one if the fraction of sellers s
is large enough or, alternatively if � is low enough. The higher, (B2) constraint
gives the condition under which buyers stay on platform 2, i.e. if s is small (and
thus (1� s) the fraction of seller on his own platform is large enough). Between
the two curves is the candidate set of SPNE (we still need to check if the seller
constraints hold).
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Now with a charge of �B > 0 to buyers on the second platform both the
(B1) and the (B2) constraint shift downwards, i.e. the set of SPNE allows for
equilibria with a lower share of sellers on platform one for a given share of
buyers. The (B2) constraint also shifts downwards. i.e. buyers move from the
second platform at higher levels of s already, (and thus for a lower fraction of
seller (1� s) on his own platform) than before given the new charge.

4 Exogenous seller charges

We now introduce an exogenous charge di¤erence �S for sellers of platform 2.
Seller constraints are (S1)

�B � sS
�B + 1

� (1� �)B � ((1� s)S + 1)
(1� �)B + 1 ��S (15)

and (S2)

(1� �)B � (1� s)S
(1� �)B + 1 ��S �

�B � (sS + 1)
�B + 1

(16)

With �S = 0:3 we �nd the picture with the seller constraints becomes:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
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ß

s

The interpretation of this �nding is as follows: For the upper linear (S1)
constraint, a seller stays on platform 1 if s is not too high for a given share of �,
otherwise he will go to platform 2. For the lower linear (S2) constraint, a seller
stays at platform 2 if s is high (i.e. his own seller share 1�s is low) otherwise he
will go to platform one. Between the two curves is the candidate set of SPNE
(we need to check if the buyer constraint holds simultaneously).
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Now that there is a charge of �S > 0 to the sellers on the second platform,
the (S1) constraint in no longer linear and shifts upwards: Seller stay at platform
1 even if s is much higher than before for given �. Similarly the (S2) constraint
is no longer linear and also shifts upwards: Seller will move from platform 2
even if s is much higher (hence their own seller share 1 � s much lower) than
before.
The numerical example with �S = 0:3 yields both seller and buyer con-

straints as

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ß

s

Only � = 0:2; s = 0:2 is a viable equilibrium here and the previous candidate
� = 0:4; s = 0:4 is no longer viable.

The result reveals that charging sellers on platform 2 allows for higher s
tolerance for given � on platform 1. Also, equally sized platforms are no longer
viable. As sellers like larger, more liquid platforms where the uncertainty about
the resulting �nal price is lower we �nd that a positive and exogenous relative
seller charge di¤erence of platform 2 can only be an equilibrium if platform 2
also has the larger share of sellers.
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5 Equilibrium properties

We now propose some general results that allow us to characterize the set of
SPNE more tightly than in EFM:

De�nition 1 We call a platform duopoly equilibrium �proportional�if the frac-
tion of buyers and sellers on each platform is identical, i.e. � = s, 8S;B 2 N0:

Absent charges the set of subgame perfect quasi-equilibria as de�ned by the
incentive constraints is disconnected from the cornered market outcomes. The
cornered market outcomes (� = 0,s = 0 and � = 1; s = 1), i.e. the case where
the market is �tipping�is always a true equilibrium and hence by de�nition part
of the quasi-equilibrium set.

Lemma 2 Given �S = �B = 0 the set of SPNE is not connected.

Proof:
From looking at the numerical example for �S = 0 the seller constraint

(S1) prevents corner outcomes (0,0) just as symmetrically (S2) prevents corner
outcomes (1,1). The �rst constraint (15) reveals the intercept with the abscissa
as

� =
B � S � 1
3B +BS

> 0 (17)

which always holds from non-triviality.�

The practical implication of this �nding is that there may always be an
outcome with only one active platform (as emphasized in the work of Brown
and Morgan (2009)). However given that there are two platforms operating
there exists a critical mass of buyers necessary to render this second platform
operational. (See EFM (2004), Proposition 4) which has implications for judging
the competitive architecture of our setting that allows for complex but realistic
and relevant network e¤ects.

Most importantly we �nd that the set of SPNE can be characterized further
than undertaken in EFM and we may often focus on the particular sub-class of
proportional equilibria.

Proposition 3 Given �B = 0 the set of SPNE of the game contains propor-
tional equilibria only even if �S > 0.

Proof:
See Appendix.�

The fact that the buyer constraint is the �stricter�one relative to the seller
constraint around the proportional quasi-equilibrium set can be seen in the
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numerical example. That this result holds for any B;S is quite intriguing and
can be rationalized by the fact that by the non-triviality assumption there are
strictly more buyers than sellers and hence they are more averse to inequalities
with regard to the buyer seller ratio (and hence their ex-ante probability to
obtain the good in the auction) than sellers. It is conjectured that the result
also holds for other distributions of valuations.
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6 Welfare

When thinking about welfare in this setting one should �rst note that due to the
presence of direct and indirect network e¤ects preferences of buyers and sellers
are largely opposed so that the welfare bene�ts of consolidation as not as in
more general models that neglect the former e¤ect. Total welfare, given as the
sum of welfare on each platform can be written as

W (�; s;B; S) =
1

2
S

(2S + SB) s2 + (B � 2S � 2SB� � 2B�) s
�2B +B� + S + SB� � 2B2� � 1 + 2B2�2

(B� + 1) (�B +B� � 1)

subject to the constraints that 0 � s; � � 1 for any �B ;�S � 0 as those
charges are only redistributed between buyers, sellers and the proprietors of the
platform.

We then �nd that

Proposition 4 Constraint maximization of the welfare function yields corner
outcomes W (0; 0; B; S) and W (1; 1; B; S) for all B;S:

Proof:
See Appendix.�

Lemma 5 Welfare of proportional equilibria is strictly decreasing in � until
� = 1

2 ; the welfare worst proportional (quasi-)equilibrium:

Proof:
See Appendix.�

As seen above, holding the relative advantages of buyers and sellers constant,
sellers prefer large markets (where the expected equilibrium price is higher) and
buyers prefer small, less e¢ cient markets. The previous Proposition shows that
aggregating these welfare di¤erentials from an overall welfare perspective, a
single platform is optimal in the set of all SPNE. From the above Proposition
in conjunction with the previous Lemma we can conclude that if �B = 0 then
an exogenous charge di¤erence �S > 0 will always be welfare improving.

As noted by EFM, the multiplicity of equilibria of the game cannot be dis-
posed of by simple equilibrium re�nement as outcomes cannot be Pareto-ranked.
Hence, for example, a coalition proof Nash equilibrium has no bite here. A sin-
gle Pareto-optimal equilibrium does not exit and thus we may not reduce the
set of SPNE set to some focal point. This observation makes the implication
of Proposition 3 even more valuable as it allows us to restrict the SPNE set
without further re�nements and we will make ample use of the result below.
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7 Endogenous price competition

In order to discuss price formation in the above platform game we now introduce
a pricing game in a stage prior to the two-stage game above.

In order to tackle the issue of multiple equilibria in this context previous
research has resorted to �bad-expectation�beliefs (used in Caillaud and Jullien
(2003), and re�ned in Armstrong and Wright (2007)) such that for any given
equilibrium in market shares, a price deviation of a platform that violates in-
centive constraints will lead to a new market equilibrium allocation in which
the pro�t of the deviating platform is strictly lower.

Instead we make use of the recent concept of insulated equilibrium (IE),
allowing �rms to chose allocations directly, developed in a monopoly context in
Weyl (2010) while investigating a hybrid approach to two-sided markets based
on Rochet and Tirole (2006) and Armstrong (2006).

An extension of IE to competition is in White and Weyl (2011). Their
theorem �nds:

Theorem 6 At an IE allocation, the total price platform j charges to side I
consumers satis�es

P I;j = CI;j + �I;j �NJ;j

 �
�@N

J

@PJ

��1
@NJ

@NI

!
j;�

�
�DI

�;j
�

(18)

Proof:
See White and Weyl (2011) for details.�
Here �I;j = N I;j=

�
�@NI;j

@P I;j

�
is a market power markup and�DI

�;j is a matrix

of diversion ratios which for two platforms is

DI
k;j �

@N I;k

@P I;j
=

�
�@N

I;j

@P I;j

�
(19)

i.e. the fraction of side I demand that goes to platform k when it increases its
own side I price keeping �xed NJ : The two sides of each platform are buyers
and sellers in our case, hence I = S and J = B: The matrix component in
the middle of (18) results from their key assumption that �rms can "insulate"
and thus �x an initial coarse allocation. The resulting equation for a coarse
allocation is

dNJ

dNI
=
@NJ

@NI
+
@NJ

@PJ
@PJ

@NI
= 0 (20)

so that the �rst order condition for pro�t maximization becomes (18).
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An allocation is coarse, so that marginal consumers have positive mass.
Denote by fB1;� the mass of buyers who are indi¤erent between joining platform

1 and no platform and �B1;� as their average interaction value. Symmetrically
for fB2;�: Denote by f

B
1;2 the mass of sellers who are indi¤erent between platform

1 and platform 2 and by �S1;2 their average interaction value.

Allowing for a market expansion margin a growth parameter for buyers and
sellers is given by ": Thus the total number of buyers and sellers are replaced
by S(1 + ") and B(1 + ") so that we have

fS1;� = f
B
2;� =

"B

2
(21)

We also know from the calculations underlying Proposition 3 (see (63)) that the
horizontal di¤erence between two buyer constraints is

�(B1) � �(B2) =
1

B
= fB1;2 (22)

which is the mass of buyers indi¤erent between the two platforms for any s and
hence by de�nition equal to fB1;2: We then �nd that

Proposition 7 The IE price on platform j is given by

PS;j = CS;j + �S;j �NB;j

�
1

"B2 + 2

�
2�B1;2 +B

2"�B1;0

��
and

PS;j � CS;j �
�

1

2 (B� + 1)

�
(23)

if the market expansion margin is small.

Proof:
See Appendix.�

Given that the original EFM model does not allow for market expansion
we focus on the case of a small margin. Thus the equilibrium seller prices on
platform 1 under IE are

PS;1� � CS;1 �
�

1

2 (�B + 1)

�
(24)

and on platform 2

PS;2� � CS;1 �
�

1

2 ((1� �)B + 1)

�
(25)

where the approximations can be made as precise as necessary by choosing
the margin su¢ ciently small. Note that these results are robust to the exact
introduction of expansion in demand and the speed of convergence.

These equilibrium prices will be strictly higher if there are relatively more
buyers on the platform on which the seller operates.
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7.1 Switching constraints with endogenous prices

We can further characterize the equilibrium set qualitatively and quantitatively.
On platform 1 seller net utilities are

uS(B;S)� PS;1 =
�B � sS
�B + 1

�
�
CS;j �

�
1

2 (�B + 1)

��
(26)

so that the switching constraint (S1) becomes

�B � sS
�B + 1

+
1

2 (B� + 1)
� (1� �)B � ((1� s)S + 1)

(1� �)B + 1 +
1

2 (B(1� �) + 1) (27)

and the switching constraint (S2) becomes

(1� �)B � (1� s)S
(1� �)B + 1 +

1

2 (B(1� �) + 1) �
�B � (sS + 1)

�B + 1
+

1

2 (B� + 1)
(28)

For our example (B = 10; S = 5) the e¤ect of endogenizing prices as compared
to the case where prices play no role, i.e. the setting of EFM can be depicted
graphically as

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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ß
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so that now platforms can coexist independently of their size.
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This will hold if there are su¢ ciently many buyers (relative to sellers) as in
our example. The exact condition is given by:

Lemma 8 Given �S = ��S and �B = 0 the set of SPNE is connected if

1

3
<

B

2S + 2
< 1

Proof:
See Appendix.�

Hence endogenizing the seller pricing decision using the equilibrium re�ne-
ment developed in White and Weyl (2011) allows also for very small platforms
to be viable and hence for the implementation of very asymmetric allocations.
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8 Large platforms

The above analysis �nds that equilibria of this game may have non-Bertrand
outcomes (despite homogeneity of the product of the transaction) where pricing
di¤erences between the two platforms may prevail in subgame perfect equilib-
rium. We now investigate the robustness of this property of the model for large
platforms.

Proposition 9 On large platforms any equilibrium is proportional and charges
satisfy �B = �S = 0:

Proof:
The buyer constraints are given above as (9) and (10). Letting the share of

buyers to sellers on each platform be �xed at some �xi = Si=Bi i = 1; 2 we �nd
that the �rst constraint becomes

�x1(
1
B1
+ �x1)

2( 1B1
+ 1)

�
�x2(

1
B2
+ �x2)

2(1 + 1
B2
)( 2B2

+ 1)
��B (29)

and on large platforms where B1; B2 !1 we �nd that this reduces to

(�x1)
2

2
� (�x2)

2

2
��B (30)

for any share �x1 as uB(1; �x1)! (�x1)
2=2: The second constraint can similarly be

reduced to
(�x2)

2

2
��B �

(�x1)
2

2
(31)

so that the only outcome that satis�es these constraints has �B = 0 and �x1 =
�x2. Similarly for sellers we have from (15) that

1� �x1 � 1� �x2 ��S (32)

and (16)

1� �x2 ��S � 1� �x1 (33)

which again can only be satis�ed for �S = 0 and �x1 = �x2 as uS(1; �x1)! 1� �x1:
The conclusion follows from noting that �x1 = �x2 , � = s:�

This �nding mirrors Proposition 3 in Brown and Morgan (2009) who show
that with vertical di¤erentiation (i.e. a charge di¤erence �S > 0 in our case)
equilibrium in very large markets is impossible.

A version of their Proposition 4 holds that in addition:
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Proposition 10 In any quasi-equilibrium in which the sites coexist and eBay
(here 1) enjoys an exogenous vertical di¤erentiation advantage for sellers (here
�S > 0) and a more than 50% market share, relatively more sellers are attracted
to a given eBay auction than an Yahoo! auction for su¢ ciently many buyers.

Proof:
The seller constraint (S2) from (16) can be transformed into

sS2 �
1

S (B + 2)
(S � 2B +�S +B�S � 1)+B�

S +B�S �B�S� + 3
S (B + 2)

(34)

Also given participation constraints hold the maximal advantage for sellers is
bounded by

�S < Max�;s

�
(1� �)B � (1� s)S

(1� �)B + 1

�
(35)

Now we show that if �S > 0 and � > 1=2 then s > � for su¢ ciently many
buyers.

Note that sS2 is strictly concave in � given that �S > 0: The di¤erence
between sS2 and the 45� line (where � = s) is

d � sS2� � =
1

S (B + 2)
(S � 2B +�+B�� 1)+ � 3B � 2S +B

2��B2��
S (B + 2)

(36)
and still strictly concave in �: Thus the di¤erence d attains a maximum at

�max =
3B � 2S +B2�S

2B2�S
> 0 (37)

at � = 0 the di¤erence is

d =
1

S (B + 2)
(S � 2B +�+B�� 1)

which is strictly negative given (35). As derivatives are smooth there exists a
unique intermediate value of � such that d = 0: This value can be found as

�k =
S �B(2��S) + �S � 1

2S �B(B�S + 3)
(38)

Note that
@�k
@�S

= � (3B � 2S +B (B + 2) (2B � S))
(�B2 + 3B � 2S)2

(39)

which given non-triviality B > S + 1 is negative. Hence the di¤erence is falling
in �S : Then there is a critical level of seller advantage such that the critical
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level of the intersection of ss2 and the 45� line is exactly at � = 1=2: This level
is

�k =
B + 2

2B +B2 + 2
(40)

and is falling in B: With su¢ ciently many buyers for any �S > �k(! 0) we
have given � > 1=2 that s > �; i.e. the seller switching constraint (S2) can only
be satis�ed strictly above the 45� line. Thus platform 1 faces s > � and so a
seller buyer ratio of

sS

�B
>
S

B
(41)

and by adding up
(1� s)S
(1� �)B <

S

B
<
sS

�B
:� (42)

The original Proposition 4 in Brown and Morgan claims that with an exoge-
nous vertical di¤erentiation advantage for sellers and a more than 50% market
share, relatively more buyers are attracted to a Yahoo! than an eBay (platform
1) auction which contradicts their data. Once prices are endogenized using
Proposition 7 we note that the theoretical implication is exactly reversed as
sellers on eBay will actually face relatively more favourable buyer seller ratios
as they will have to pay the higher seller charge and thus face an endogenous
vertical di¤erentiation disadvantage (i.e. �S < 0).

It turns out that endogenizing prices to sellers is also su¢ cient to reverse
the result in Brown and Morgan (2009) about the relative transaction prices on
both platforms and hence bring the model in line with their data in this respect
too. We can show that:

Proposition 11 In any quasi-equilibrium in which the sites coexist and eBay
(here 1) enjoys an endogenous vertical di¤erentiation disadvantage for sellers
(here ��S < 0) and a more than 50% market share, for su¢ ciently many buyers
the transaction price on eBay is higher than that on Yahoo!.

Proof:
See Appendix.�

Hence we �nd that with endogenous seller charges the transaction prices on
eBay will be larger than those of Yahoo!, in line with the data �ndings in Brown
and Morgan (2009).
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Alternatively we can also use an exogenous vertical di¤erentiation advantage
for buyers to similarly show that:

Proposition 12 In any quasi-equilibrium in which the sites coexist and eBay
(here 1) enjoys an exogenous vertical di¤erentiation advantage for buyers (here
�B > 0) and a more than 50% market share, relatively more buyers are attracted
to a given eBay auction than an Yahoo! auction for su¢ ciently many buyers
and the transaction price on eBay is higher than on Yahoo!.

Proof:
See Appendix.�

We have thus shown two alternatives by which the empirical results reported
in Brown and Morgan (2009) can be brought in line with the theory. The �rst
implies that the liquidity e¤ects of a large market will dominate the e¤ect of
the endogenous seller charges on large platforms leading to a higher expected
transaction price to the detriment of its buyers. Alternatively one may argue
that if eBay has an exogenous vertical di¤erentiation advantage for buyers in
addition to being the dominant platform in a liquid market this is also su¢ cient
to explain the more favourable buyers-seller ratio for its buyers and for it to
have larger transaction prices than at Yahoo! auctions.

Note that endogenous seller charges satisfy

lim
B!1

(��s) = lim
B!1

(
B

2

1� 2�
(B(1� �) + 1) (B� + 1)) = 0: (43)

The intuition for this limit result is straightforward: The possibility that
the switching of either buyer or seller has a tangible impact on expectations
decreases as the number of buyers and sellers increases so that in the limit
as markets get very large all friction disappears from the model and we get a
Bertrand type outcome with regard to the charge di¤erences and proportional
equilibria. This Proposition can be easily extended to an unspeci�ed distribu-
tion of valuations and is thus robust.

We also have a result for welfare on large platforms: As total welfare of a
platform goes out of bounds if the platform gets very large we look at total
welfare per buyer and seller respectively

w(B;S)

B
= uB(B;S) + �xuS(B;S) = �x(1�

�x

2
) (44)

and
w(B;S)

S
=
1

�x
uB(B;S) + uS(B;S) = 1�

�x

2
(45)

where �x is the limit of the total seller to buyer ratio. By the non-triviality
assumption the per capita welfare contribution of a buyer is thus always lower
than that of a seller.
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9 Conclusion

Often buyers cannot be charged for participating on a platform. For example
on eBay seller-fee-shifting is not allowed. Alternatively the �nal transactions
may not be observable as on used-car platforms. In these cases the strictness
of the buyer switching constraints implies that independently of whether or
not there are charges to the sellers, the equilibrium market structure of the
platform duopoly will imply proportional equilibria. This strongly restricts the
set of equilibria of the game compared to that in EFM.

The original Proposition 4 in the paper by Brown and Morgan (2009) ex-
actly contradicts their data which �nds that: "eBay sellers enjoy higher prices
and more favourable buyer-seller ratios than do Yahoo! sellers." Endogenizing
the platform�s pricing decision for sellers by using the concept of "insulating
equilibrium" in Proposition 7 we are able to show that theory and practice ac-
tually reveal an endogenous vertical disadvantage for sellers on eBay being the
dominant platform. This observation exactly reverses their theoretical �ndings
bringing them in line with the data from their �eld experiments.

A similar �nding pertains with respect to the predicted relative transac-
tion prices on both platforms. Once charges to sellers are endogenized, being
the dominant platform implies that transaction prices will indeed be larger on
eBay, the more liquid platform, again as observed it their �eld experiments. An
alternative theoretical derivation of these results can be derived for an exogenous
vertical di¤erentiation advantage for buyers on eBay.
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10 Appendix

Proof of Lemma 0:
Under the uniform distribution on [0,1] the ith lowest order statistic out of

n draws is distributed Beta(i; n� i+ 1) with probability density function

f i;n�i+1(x) =

(
xi�1(1�x)n�iR 1

0
ui�1(1�u)n�idu ; x 2 (0; 1)

0 otherwise
(46)

and expectation Z 1

0

xf i;n�i+1(x)dx =
i

n+ 1
(47)

As the order statistic of the S + 1 highest of B draws is also that of the B � S
lowest, the expectation of the price given by the S + 1 highest buyer valuation
can be rewritten as Z 1

0

xfS+1;B(x)dx =
B � S
B + 1

(48)

which is also expected seller surplus due to the normalized reservation value.
Thus the density of the order statistic vS+1;B is

fS+1;B(x) =

(
xB�S�1(1�x)SR 1

0
uB�S�1(1�u)Sdu ; x 2 (0; 1)

0 otherwise
(49)

Total welfare w(B;S) on one platform given uniformly distributed valuations
can thus be written as

w(B;S) = S

Z 1

0

�Z 1

x

vf(v jv > x )dv)
�
fS+1;B(x)dx =

SR 1
0
uB�S�1(1� u)Sdu

Z 1

0

�Z 1

x

v

�
1

1� x

�
dv

�
(xB�S�1(1� x)S)dx =

S

2
R 1
0
uB�S�1(1� u)Sdu

Z 1

0

(x+ 1)(xB�S�1(1� x)S)dx =

= S(1� 1
2

1 + S

B + 1
) = S

�
B � S
B + 1

�
+B

�
S(1 + S)

2B(B + 1)

�
:�

21



Proof of Proposition 3:
We look at the seller constraint and the buyer constraint in turns and show

whether it is possible to have them satis�ed for non-proportional equilibria.
Constraint (S1) is

B� � Ss
B� + 1

=
B(1� �)� (S(1� s) + 1)

B(1� �) + 1 ��S (50)

or

s(S1) =
3B� �B + SB� + S + 1 +�SB2� ��SB2�2 +�S(B + 1)

S (B + 2)
(51)

and (S2) is

B(1� �)� S(1� s)
B(1� �) + 1 ��S =

B� � (Ss+ 1)
B� + 1

(52)

or

s(S2) =
�2B + 3B� + SB� + S +�SB2� ��SB2�2 +�S(B + 1)� 1

S (B + 2)
(53)

with vertical di¤erence between the two seller constraints

s(S1) � s(S2) =
1

S
(54)

for any�S : Thus it may be possible to have the seller constraint strictly satis�ed
at a non-proportional equilibrium by �squeezing in�non-proportional equilibrium
candidate vertically.

For �S = 0 we have

�(S1) =
SsB + 2Ss+B � S � 1

B (3 + S)
(55)

and

�(S2) =
2B � S + 2Ss+ SsB + 1

B (3 + S)
(56)

so that the horizontal di¤erence between the two seller constraints is

�(S2) � �(S1) =
B + 2

B (3 + S)
>
1

B
(57)

as B > S + 1: Thus it may be possible to have the seller constraint satis�ed at
a non-proportional equilibrium by �squeezing in�non-proportional equilibrium
candidate horizontally.
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We now look at the critical buyer constraints: Now (B1) is

sS(1 + sS)

2�B(1 + �B)
� (1� s)S(1 + (1� s)S)
2((1� �)B + 1)(1 + (1� �)B + 1) ��B (58)

and (B2) is

(1� s)S(1 + (1� s)S)
2(1� �)B(1 + (1� �)B) ��B �

sS(1 + sS)

2(�B + 1)(1 + �B + 1)
(59)

For �B = 0 the solution to (B1) is

�(B1) =
1

2 (1 + S) (2s� 1) � (60)

(4S + 2SB) s2 + (�2S + 2 + 2B) s+ 1 + S �
p
	

B

and the one for (B2) is

�(B2) =
1

2 (1 + S) (2s� 1) � (61)

(4S + 2SB) s2 + (2B � 2� 6S) s+ 3 + 3S �
p
	

B

with

	 = 4S2 (B + 2)
2
s4 � 8S2 (B + 2)2 s3 + (62)�

�16SB � 12 + 4S2B2 � 4SB2 � 8S + 20S2 � 16B + 16S2B � 4B2
�
s2 �

4 (1 + S)
�
S � 4B �B2 � 3

�
s+ 1 + S2 + 2S

The horizontal di¤erence is then

�(B1) � �(B2) =
1

B
(63)

Thus given that the two constraints with �B = 0 are always on opposite sides of
the � = s diagonal there will always be proportional equilibrium candidates and
it is impossible to �squeeze in�another non-proportional equilibrium candidate
horizontally. Note that the result does not hold for �B > 0 although the
horizontal di¤erence remains the same.

The vertical di¤erence between (B2) and (B1) is di¢ cult to calculate directly.
However we can use the fact that the distance between (B1) and the diagonal is
monotone increasing in � and the mirror image, between (B2) and the diagonal
is monotone decreasing in � which follows from buyers preference for the smaller
platform. Hence if we can show that this distance for (B1) at � = 1 (or the
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distance for (B2) at � = 0 is smaller than 1
S again we can be sure that no non-

proportional equilibrium can be �squeezed in�next to the proportional equilibria
on the diagonal.

Using (B1)

�(B1) =
1

2 (1 + S) (2s� 1) � (64)

(4S + 2SB) s2 + (�2S + 2 + 2B) s+ 1 + S �
p
	

B

we solve this equation for the relevant root and evaluate it at � = 1 to �nd

s(B1) = �
1

2

�2SB � 2SB2 �B �B2 � 2+p
(4 + 4B + 5B2 +B4 + 2B3 + 16SB + 8B2S2 + 8BS2 + 16SB2)

S (B +B2 � 2)
(65)

The vertical distance to the diagonal is then given as

1� s(B1)(� = 1) = (66)

1

2

�4S �B �B2 � 2+p
(4 + 4B + 5B2 +B4 + 2B3 + 16SB + 8B2S2 + 8BS2 + 16SB2)

S (B +B2 � 2)

Now
1� s(B1)(� = 1) <

1

S
(67)

will hold if
B < �S (68)

which cannot hold, or if
B > S � 1 (69)

which holds by the non-triviality constraint that B > S + 1:�
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Proof of Proposition 4:
In order to obtain general results we need to maximize using the Kuhn-

Tucker approach

Maxs;�W =
1

2
S

(2S + SB) s2 + (B � 2S � 2SB� � 2B�) s
�2B +B� + S + SB� � 2B2� � 1 + 2B2�2

(B� + 1) (�B +B� � 1) (70)

subject to the constraints

� � 0; s � 0; � � 1; s � 1 (71)

so that we can set up the Lagrangian

L(�; s; �1; �2; �3; �4; ) = (72)

1

2
S

(2S + SB) s2 + (B � 2S � 2SB� � 2B�) s
�2B +B� + S + SB� � 2B2� � 1 + 2B2�2

(B� + 1) (�B +B� � 1)
��1(��)� �2(�s)� �3(� � 1)� �4(s� 1)

and the �rst order conditions can be written as

@L

@�
=
1

2
SB

(2s� 1)
�
B2�2(S + 1) + S(2B� + 1) + 1

�
+

(1� 2�) sB (sS(B + 2) +B) + (s� �)2B
(B� + 1)

2
(B(1� �) + 1)2

+ �1 � �3 = 0 (73)

@L

@s
=
1

2
S
(1� 2s)2S + (2� � 1)B + (� � s)2SB

B2�(1� �) +B + 1 + �2 � �4 = 0 (74)

@L

@�1
= � � 0; �1 � 0; �1� = 0 (75)

@L

@�2
= s � 0; �2 � 0; �2s = 0 (76)

@L

@�3
= 1� � � 0; �3 � 0; �3(1� �) = 0 (77)

@L

@�4
= 1� s � 0; �4 �; �4(1� s) = 0 (78)

Note that the �rst term in (73) given by

A � 1

2
SB

(2s� 1)
�
B2�2(S + 1) + S(2B� + 1) + 1

�
+

(1� 2�) sB (sS(B + 2) +B) + (s� �)2B
(B� + 1)

2
(B(1� �) + 1)2

(79)
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is strictly negative if � 2
�
1
2 ; 1
�
and s 2

�
0; 12
�
(or if � 2

�
1
2 ; 1
�
and s 2

�
0; 12
�
)

and positive otherwise.

Note that the �rst term B in (74) given by

B � 1

2
S
(1� 2s)2S + (2� � 1)B + (� � s)2SB

B2�(1� �) +B + 1 (80)

is strictly negative if � 2
�
0; 12
�
and s 2

�
1
2 ; 1
�
(or if � 2

�
0; 12
�
and s 2

�
1
2 ; 1
�
)

and positive otherwise.

We need to consider three cases in turn:
a) Given

0 � � � 1

2
< s � 1

we may rewrite the constraints as:

@L

@�
= (A > 0) + �1 � �3 = 0 (81)

@L

@s
= (B < 0) + �2 � �4 = 0 (82)

@L

@�1
= � � 0; �1 � 0; �1� = 0 (83)

@L

@�2
= s � 0; �2 � 0; �2s = 0 (84)

@L

@�3
= 1� � � 0; �3 � 0; �3(1� �) = 0 (85)

@L

@�4
= 1� s � 0; �4 � 0; �4(1� s) = 0 (86)

As �1 � 0 we �nd that �3 > 0 and as �4 � 0 we �nd that �2 > 0: Then it fol-
lows that we need that � = 1 and s = 0 which cannot be the case. Contradiction.

b) Given

0 � s � 1

2
< � � 1

we may rewrite the constraints as:

@L

@�
= (A < 0) + �1 � �3 = 0 (87)

@L

@s
= (B > 0) + �2 � �4 = 0 (88)

@L

@�1
= � � 0; �1 � 0; �1� = 0 (89)
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@L

@�2
= s � 0; �2 � 0; �2s = 0 (90)

@L

@�3
= 1� � � 0; �3 � 0; �3(1� �) = 0 (91)

@L

@�4
= 1� s � 0; �4 � 0; �4(1� s) = 0 (92)

As �3 � 0 we �nd that �1 > 0 and as �2 � 0 we �nd that �4 > 0: Then it
follows that we need that s = 1 and � = 0 which cannot be the case. Contra-
diction.

c) If we assume that
s = �

the Lagrangian reduces to

L(�; s; �1; �2; �3; �4) = L(s; �) (93)

1

2
S

2Ss2 � SBs2 + 2Bs� 2sS � 2Bs2�
2B + S + SBs� 2B2s� 1 + 2B2s2

(Bs+ 1) (Bs�B � 1) � �1(�s)� �2(s� 1)

@L

@s
=

 
C =

1

2
S
(2s� 1) (B + 2) (B � S)
(Bs+ 1)

2
(B(1� s) + 1)2

!
+ �1 � �2 = 0 (94)

@L

@�1
= s � 0; �1 � 0; �1s = 0 (95)

@L

@�2
= 1� s � 0; �2 � 0; �2(1� s) = 0 (96)

Note that C negative if s < 1
2 and positive if s >

1
2 :

Case s > 1
2 :

@L

@s
= (C > 0) + �1 � �2 = 0 (97)

@L

@�1
= s � 0; �1 � 0; �1s = 0 (98)

@L

@�2
= 1� s � 0; �2 � 0; �2(1� s) = 0 (99)

As �1 � 0 and C > 0 then �2 > 0 then s = 1; a corner solution.

Case s < 1
2 :
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As �2 � 0 and C < 0 then �1 > 0 then s = 0; a corner solution.
All we need to show for the second order condition to hold is that

S (B + 2) (S �B) 3B
2s(1� s)�B � 1�B2

(Bs+ 1)
3
(B(1� s) + 1)3

< 0 (100)

At the �rst corner solution s = 1 we �nd

H11(s = 1) = S (B + 2) (B � S)
B + 1 +B2

(B + 1)
3 < 0 (101)

Similarly at the second corner solution s = 0 we �nd

H11(s = 0) = S (B + 2) (B � S)
B + 1 +B2

(B + 1)
3 < 0 (102)

and thus both solutions are indeed maximizing the welfare function.�

Proof of Lemma 5:
Any proportional equilibrium implies that � = s and so total welfare reduces

to

W =
1

2
S

�
2B + SB � 2B2 � 2S

�
�2+�

2B2 + 2S � 2B � SB
�
� + 2B � S + 1

(B� + 1) (B(1� �) + 1) (103)

with �rst derivative

@W

@�

!
= 0 =

1

2
S
(2� � 1) (B + 2) (B � S)
(B� + 1)

2
(B(1� �) + 1)2

(104)

with solution �� = 1=2: See that @W=@� < 0 for � < 1=2 and @W=@� > 0 for
� > 1=2 and any B;S:

The second order condition is

@2W

@�2
j�=�� = 16S

B � S
(B + 2)

3 > 0 (105)

as B > S + 1 and hence �� yields a minimum of the welfare function when we
look at proportional equilibria, the welfare worst proportional equilibrium:�
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Proof of Proposition 7:
The matrices given in (20) can be decomposed into:

"
~�
B

1;�f
B
1;� +

~�
B

1;2f
B
1;2 �~�B1;2fB1;2

�~�B1;2fB1;2 ~�
B

2;�f
B
2;� +

~�
B

1;2f
B
1;2

#
+

�
�fB1;� � fB1;2 fB1;2

fB1;2 �fB2;� � fB1;2

�
@PB

@NS
= 0

(106)
which, using symmetry, becomes"
~�
B

1;�
"B
2 +

~�
B

1;2
1
B �~�B1;2 1B

�~�B1;2 1B ~�
B

1;�
"B
2 +

~�
B

1;2
1
B

#
+ (�1)

�
"B
2 +

1
B � 1

B

� 1
B

"B
2 +

1
B

�
@PB

@NS
= 0

(107)
or �

"B
2 +

1
B � 1

B

� 1
B

"B
2 +

1
B

��1 " ~�
B

1;�
"B
2 +

~�
B

1;2
1
B �~�B1;2 1B

�~�B1;2 1B ~�
B

1;�
"B
2 +

~�
B

1;2
1
B

#
= (108)

2

B" (B2"+ 4)

�
B2"+ 2 2
2 B2"+ 2

��1 " ~�
B

1;�
"B
2 +

~�
B

1;2
1
B �~�B1;2 1B

�~�B1;2 1B ~�
B

1;�
"B
2 +

~�
B

1;2
1
B

#
=

@PB

@NS

The price to sellers is now

PS;j = CS;j �NB;j � 2(B2"+ 4)�1 � (109)0@24 1
2

�
2�B1;� + 2�

B
1;2 +B

2"�B1;�

� �
�B1;� � �B1;2

��
�B1;� � �B1;2

�
1
2

�
2�B1;� + 2�

B
1;2 +B

2"�B1;�

� 351A
j;�

�
�DI

�;j
�

Given �
1

�DB
1;2

�
=

"
1

� fB1;2
fB1;�+f

B
1;2

#
=

�
1

� 2
"B2+2

�
(110)

we �nd, expanding by the �rst row that prices are

PS;j = CS;j + �S;j �NB;j � 2(B2"+ 4)�1 ���
1

2

�
2�B1;� + 2�

B
1;2 +B

2"�B1;�

�
� 2

"B2 + 2

�
�B1;� � �B1;2

���
(111)

= CS;j + �S;j �NB;j

�
1

"B2 + 2

�
2�B1;2 +B

2"�B1;�

��
As the EFM model does not allow for a market expansion margin we let "! 0
so what matters are switchers�valuations �B1;2 only. As, in addition, consumers

are homogenous these valuations are �B1;2 = �
B = @uB(B;S)

@S : We thus �nd that
the limit equilibrium price on platform j (with buyer share �B and seller share
sS) is
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PS;j = CS;j + �S;j �NB;j�B

= CS;j � sS
�
� 1

�B + 1

�
� �B

�
1

2�B

2sS + 1

�B + 1

�
(112)

= CS;j �
�

1

2 (B� + 1)

�
:�

Proof of Lemma 8:
The binding switching constraint (S1) can be solved as

sS1(P
S�) =

1

4S + 2BS
(�B + 2S + 4B� + 2BS� + 2) (113)

The intercept with the ordinate is at � = 0 hence

sS1(P
S�) =

2S + 2�B
4S + 2BS

> 0 (114)

is the positive intercept with the ordinate if

2S + 2 > B (115)

Similarly the biding switching constraint (S2) can be solved as

sS2(P
S�) =

1

4S + 2BS
(�3B + 2S + 4B� + 2BS� � 2) < 0 (116)

The intercept is positive on the abscissa and therefore negative on the ordinate
if

sS2(P
S�) =

1

4S + 2BS
(�3B + 2S � 2) < 0 (117)

or if

B >
2S � 2
3

(118)

Hence platforms can coexist for any size di¤erences if

2S � 2
3

< B < 2S + 2 (119)

or

1

3
<

B

2S + 2
< 1:� (120)
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Proof of Proposition 11:

The transaction prices di¤erence is

ty�te =
(1� �)B � (1� s)S

(1� �)B + 1 ��B � sS
�B + 1

=
B � S � 2B� + 2Ss�BS� +BSs

(B(1� �) + 1) (B� + 1)
(121)

which has the same sign as

� � B�S�2B�+2Ss�BS�+BSs = B�S+Ss(B+2)�B�(2+S) (122)

which is increasing in s:The (S2) constraint gives

sS2 �
1

S (B + 2)
(S � 2B +�S +B�S � 1) +B�

S +B�S �B�S� + 3
S (B + 2)

(123)
With endogenous prices the seller charge di¤erential is

��S =
B

2

1� 2�
(B(1� �) + 1) (B� + 1) < 0 (124)

and with many buyers ��S ! 0: Hence what remains is the condition

sS2 �
1

S (B + 2)
(S � 2B � 1) +B� S + 3

S (B + 2)
(125)

Substituting in the above yields

� = �B(1� �)� 1 < 0 (126)

so this is not su¢ cient for � to be positive we need a higher s: Still we know from
Proposition 3 that the buyer switching constraints that are forcing equilibria to
be proportional that � = s has to hold. The transaction price di¤erential then
reduces to

ty � te = (B � S)
1� 2�

(B(1� �) + 1) (B� + 1) (127)

and as B > S +1 and � > 1=2 we �nd that this di¤erence is indeed negative.�
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Proof of Proposition 12:

The transaction prices di¤erence is

ty�te =
(1� �)B � (1� s)S

(1� �)B + 1 ��B � sS
�B + 1

=
B � S � 2B� + 2Ss�BS� +BSs

(B(1� �) + 1) (B� + 1)
(128)

which has the same sign as

� � B�S�2B�+2Ss�BS�+BSs = B�S+Ss(B+2)�B�(2+S) (129)

which is decreasing in �:

Assuming a exogenous vertical buyer advantage for eBay (1), the (B2) con-
straint implies

(1� s)S(1 + (1� s)S)
2(1� �)B(1 + (1� �)B) ��B �

sS(1 + sS)

2(�B + 1)(1 + �B + 1)
(130)

solving for � implicitly yields

2�B2 � 2 +
B �

vuuuuut
B2(2(1 + �B)(2 + �B)�B + sS + sS

2)�
(2(1 + �B)(2 + �B)(�B + 2(�1 + s)S(�1 + (�1 + s)S))

+sS + sS2

2(1+�B)(2+�B)�B+sS+sS2

B2
(131)

With su¢ ciently many buyers 2�B2 ! 2 so that � > s: Also

� � B � S + Ss(B + 2)�B(2 + S) = 2Ss� S �BS �B +BSs: (132)

The maximum this can take (at s = 1) is

� = 2S � S �BS �B +BS = �(B � S) (133)

which by non-triviality B > S + 1 is always negative.�
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