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Abstract

Given the growing availability of the big dataset which contain infor-
mation on multiple dimensions and following the recent research trend
on the multidimensional modelling, we develop the 3D panel data models
with three-way error components that allow for strong cross-section de-
pendence (CSD) thorough unobserved heterogeneous global factors, and
propose the consistent estimation procedure. We also discuss the extent of
CSD in 3D models and provide a diagnostic test for cross-section depen-
dence. We provide the extensions to unbalanced panels and 4D models.
The validity of the proposed approach is confirmed by the Monte Carlo
simulation results. We also demonstrate the empirical usefulness through
the application to the 3D panel gravity model of the intra-EU trade flows.
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1 Introduction

Given the growing availability of the big dataset which contain information on
multiple dimensions, the recent literature on the panel data has focused more
on extending the two-way error components models to the multidimensional set-
ting. Balazsi, Matyas and Wansbeek (2015, BMW hereafter) introduce the ap-
propriate within estimators for the most frequently used three-dimensional (3D)
fixed effects panel data models, and Balazsi, Baltagi, Matyas and Pus (2016,
BBMP hereafter) consider the random effects approach and propose a sequence
of optimal GLS estimators. This multi-dimensional approach is expected to
become an essential tool for the analysis of complex interconnectedness of the
big dataset, and it can be not only applied to the number of bilateral (origin-
destination) flows such as trade, FDI, capital or migration flows (e.g. Feenstra,
2004; Bertoli and Fernandez-Huertas Moraga, 2013; Gunnella et al., 2015), but
also to a variety of matched dataset which may link the employer-the employee
and the pupils-teachers (e.g. Abowd et al., 1999; Kramarz et al., 2008).
However, there has been no study attempting to address an important is-

sue of explicitly controlling cross-sectional error dependence in 3D or higher-
dimensional panel data, even though the cross-section dependence (CSD) seems
pervasive in 2D panels because it seems rare that the cross-section covariance of
the errors is zero (e.g. Pesaran, 2015). Recently, there has been much progress
in modelling CSD in 2D panels by two main approaches, the factor-based ap-
proach (e.g. Pesaran, 2006; Bai, 2009) and the spatial econometrics techniques
(e.g. Behrens et al., 2012; Mastromarco et al., 2016b). Chudik et al. (2011)
show that the factor-based models exhibit the strong CSD whilst the spatial-
based models can deal with weak CSD only. See also Bailey, Kapetanios and
Pesaran (2016) for more general discussions.
Chapter 3 by Le Gallo and Pirotte (2016) reviews the current state-of-art

in the analysis of multi-dimensional nested spatial panels, highlighting a range
of issues related to the specification, estimation, testing procedures and predic-
tions. Chapter 10 by Baltagi, Egger and Erhardt (2016) provides a survey of
empirical issues in the analysis of gravity-model estimation of international trade
flows, proceeds with the modelling of the multidimensional stochastic structure,
focusing on fixed-effects estimation, and describes how the spatial autocorrela-
tion and spillovers can be introduced into such models. Chapter 12 by Baltagi
and Bresson (2016) surveys hedonic housing models and discrete choice mod-
els using multi-dimensional panels, also focussing on the spatial econometrics
approach.
Following this research trend, we develop the 3D panel data models with

strong CSD. In particular, we generalise the multi-dimensional error compo-
nents specification by modelling residual CSD via unobserved heterogeneous
global factors. The multidimensional country-time fixed (CTFE) and random
effects (CTRE) estimators proposed by BMW and BBMP fail to remove het-
erogenous global factors, suggesting that they are biased in the presence of the
nonzero correlation between the regressors and unobserved global factors. In
this regard, we develop the two-step consistent estimation procedure. First,
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we follow Pesaran (2006) and augment the 3D model with the cross-section
averages of dependent variable and regressors over double cross-section units,
which are shown to provide valid proxies for unobserved heterogenous global
factors. Next, we apply the 3D-within transformation to the augmented speci-
fication and obtain consistent estimators, called the 3D-PCCE estimator. Our
approach is the first attempt to accommodate strong CSD in multi-dimensional
panels, and expected to make timely contribution to the growing literature.
We discuss the extent of CSD within the 3D panel data models under the

three different error components specifications respectively with the CTFE, with
the two-way heterogeneous factor, and with both components. We also distin-
guish between three types of CSD under the hierarchical multi-factor error com-
ponents specification recently advanced by Kapetanios and Shin (2017). First,
the global factor tends to display strong CSD as it influences the (ij) pairwise
interactions for i = 1, ..., N1 and j = 1, ..., N2 (of N1N2 dimension). Next,
the local factors show semi-strong or semi-weak CSD, as they influence origin
and destination countries separately (each of N1 or N2 dimension). Finally,
idiosyncratic errors are characterised with the weak or no CSD.
We then develop a diagnostic test for the null hypothesis of (pairwise) resid-

ual cross-section independence or weak dependence in the 3D panels, which is
a modified counterpart of an existing CD test in the 2D panels proposed by Pe-
saran (2015). (CSD exponent) Furthermore, we provide a couple of extensions
into unbalanced panels and 4D or higher dimensional models.
We have conducted the Monte Carlo studies to investigate the small sample

properties of the 3D-PCCE estimators relative to the CTFE estimator. We find
strong evidence that the 3D-PCCE estimators perform well when the 3D panel
data is subject to the strong CSD through heterogeneous global factors. On the
contrary, the CTFE estimator tends to display severe biases and size distortions.
We apply our proposed 3D PCCE estimation techniques, together with the

two-way fixed effects and the CTFE estimators, to the dataset over the period
1960-2008 (49 years) for 91 country-pairs amongst 14 EU countries. Based on
the CD test results, estimates of CSD exponent, and the predicted signs and
statistical significance of the coeffi cients, we come to a conclusion that the 3D
PCCE estimation results are mostly satisfactory and reliable. In particular,
when we explicitly control for strong CSD in the 3D panels, we find that the
trade effect of currency union is rather modest. This evidence provides strong
support for the thesis that the trade increase within the Euro area may reflect
a continuation of a long-run historical trend linked to the broader set of EU’s
economic integration policies.
This Chapter proceeds in 7 Sections. Section 16.2 introduces 3D models with

three-way error components that allow for strong cross-section dependence, and
develops the consistent estimation procedure. Section 16.3 discusses the nature
of CSD in 3D models and provide a diagnostic test for cross-section dependence.
Section 16.4 presents the extension to 4D models. Section 16.5 discusses the
Monte Carlo simulation results. The empirical results for the gravity model of
EU exports flows are presented in Section 16.6, while Section 16.7 concludes.
Throughout the chapter we adopt the following standard notations. IN is
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an N ×N identity matrix, JN the N ×N identity matrix of ones, and ιN the
N × 1 vector of ones, respectively. MA projects the N × N matrix A into
its null-space, i.e., MA = IN − A(A′A)−1A′. Finally, y.jt = N−1

1

∑N1

i=1 yijt,
yi.t = N−1

2

∑N2

j=1 yijt and yij. = T−1
∑T
t=1 yijt denote the average of y over the

index i, j and t, respectively, with the definition extending to other quantities
such as y..t, y.j., yi.. and y....

2 3D Models with Cross-sectional Error Depen-
dence

Following Balazsi, Matyas and Wansbeek (2015, BMW hereafter) and Balazsi,
Baltagi, Matyas and Pus (2016, BBMP hereafter), we consider the following
three-dimensional country-time fixed effects panel data model:

yijt = β′xijt+γ
′sit+δ

′djt+κ
′qt+ϕ

′zij+uijt, i = 1, ..., N1, j = 1, ..., N2, t = 1, ..., T,
(1)

with the error components:

uijt = µij + vit + ζjt + εijt (2)

where yijt is the dependent variable observed across three indices (e.g. the
import of country j from country i at period t), xijt, sit, djt, qt, zij are the
kx × 1, ks × 1, kd × 1, kq × 1, kz × 1 vectors of covariates covering all possible
measurements observed across three indices, and β, γ, δ, κ, ϕ, are the associ-
ated vectors of the parameters. The multiple error components in (2) contain
bilateral pair-fixed effects

(
µij
)
as well as origin and destination country-time

fixed effects (CTFE), vit and ζjt, respectively.
1

To remove all unobserved fixed effects, µij , vit and ζjt, BMW derive the
following 3D within transformation:2

ỹijt = yijt − ȳij. − y.jt − ȳi.t + ȳ..t + ȳ.j. + ȳi.. − ȳ... (3)

Applying the 3D within transformation to (1), we can estimate consistently β
only from the following regression:

ỹijt = β′x̃ijt + ε̃ijt, i = 1, ..., N1, j = 1, ..., N2, t = 1, ..., T, (4)

where x̃ijt = xijt − x̄ij. − x̄.jt − x̄i.t + x̄..t + x̄.j. + x̄i.. − x̄... and similarly for
ε̃ijt. We write (4) compactly as

Ỹij = X̃ijβ + Ẽij (5)

1Notice that the error component specification (2) is proposed by Baltagi et al. (2003).
2Baltagi et al. (2015) also derive the same projection by applying Davis’ (2002) Lemma

twice (see Corollary 1).
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where

Ỹij
T×1

=

 ỹij1
...

ỹijT

 , X̃ij
T×kx

=

 x̃′ij1
...

x̃′ijT

 , Ẽij
T×1

=

 ε̃ij1
...

ε̃ijT

 .
The 3D-within estimator of β is obtained by

β̂W =

(
N1∑
i=1

N2∑
j=1

X̃′ijX̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijỸij

)
. (6)

Then, it follows that, as (N1, N2, T )→∞ (see also BBMP),

√
N1N2T

(
β̂W − β

)
a∼ N

0, σ2
ε lim

(N1,N2,T )→∞

(
1

N1N2T

N1∑
i=1

N2∑
j=1

X̃′ijX̃ij

)−1
 .

By construction, the within transformation in (3) wipes out all other co-
variates, xit, xjt, xt, and xij in (1). But, we may be interested in uncovering
the effects of those covariates (e.g. the impacts of measured trade costs in the
structural gravity model). In order to recover those coeffi cients, it would be
worthwhile to develop an extension of the Hausman-Taylor (1981) estimation,
which has been popular in the two-way panel data models even in the presence
of cross sectionally correlated errors (e.g. Serlenga and Shin, 2007). Chapter 3
by Balazsi, Bun, Chan and Harris (2016) develops an extended Hausman-Taylor
estimator for multi-dimensional panel data models.
BMW also show that the CTFE error components in (2) nests the number

of special cases by applying suitable restrictions to (2).3 Notice, however, that
the model (1) with (2) does not address an important issue of cross-sectional
error dependence. In the presence of such cross-section dependence (CSD), the
3D-within estimator would be likely to be biased. In this regard, we consider a
couple of alternative 3-way error components specifications that can accommo-
date CSD, and develop the appropriate estimation techniques.
Given that vit and ζjt are supposed to measure the (local) origin and des-

tination country-time fixed effects, it is natural to add the global factor λt to
(2):

uijt = µij + vit + ζjt + λt + εijt

But, the 3D-within transformation, (3) removes λt together with µij , vit and

ζjt, because λt is shown to be proportional to
N1∑
i=1

vit or
N2∑
j=1

ζjt (see also footnote

6 below).
To introduce strong CSD explicitly in the 3D model, (1), we first consider

the following error components specification:

uijt = µij + πijλt + εijt. (7)

3Baltagi et al. (2003), Baldwin and Taglioni (2006), and Baier and Bergstrand (2007)
consider several forms of fixed effects such as uijt = αi +γj +λt + εijt, uijt = µij +λt + εijt,
uijt = ζjt + εijt, uijt = vit + εijt, and uijt = vit + ζjt + εijt.
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This is similar to the two-way heterogeneous factor model considered by Serlenga
and Shin (2007). We follow Pesaran (2006) and apply the cross-section averages
of (1) and (7) over i and j to obtain:

ȳ..t =
1

N1

N1∑
i=1

1

N2

N2∑
j=1

(
β′xijt + γ′sit + δ′djt + κ′qt +ϕ′zij + µij + πijλt + εijt

)
= β′x̄..t + γ′s̄.t + δ′d̄.t + κ′qt +ϕ′z̄..+ µ̄.. + π̄..λt + ε̄..t (8)

where s̄.t = N−1
1

∑N1

i=1 sit, d̄.t = N−1
2

∑N2

j=1 djt, z̄.. = (N1N2)
−1∑N1

i=1

∑N2

j=1 zij ,

µ̄.. = (N1N2)
−1∑N1

i=1

∑N2

j=1 µij and π̄.. = (N1N2)
−1∑N1

i=1

∑N2

j=1 πij . Hence,

λt =
1

π̄..

{
ȳ..t −

(
β′x̄..t + γ′s̄.t + δ′d̄.t + κ′qt +ϕ′z̄.. + µ̄.. + ε̄..t

)}
Using these results we can augment the model (1) with the cross-section averages
as follows:

yijt = β′xijt + γ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + ε∗ijt, (9)

where

ψ′ij =
(
ψ0ij ,ψ

′
1ij ,ψ

′
2ij ,ψ

′
3ij ,ψ

′
4ij

)
=

(
πij
π̄..

,
−πijβ′

π̄..
,
−πijγ′
π̄..

,
−πijδ′

π̄..
,

(
1− πij

π̄..

)
κ′
)

ft =
(
ȳ..t, x̄

′
..t, s̄

′
.t, d̄

′
.t,q

′
t

)′
(10)

τ ij = ϕ′zij −
−πij
π̄..

ϕ′z.., µ
∗
ij = µij −

πijµ..
π̄..

, ε∗ijt = εijt −
πij
π̄..

ε̄..t.

We write (9) compactly as

Yij = Xijβ + Siγ + Djδ + Fψij + τ ijιT + µ∗ijιT + E∗ij (11)

= Wijθ + Hψ∗ij + E∗ij , i = 1, ..., N1, j = 1, ..., N2

where

Yij
T×1

=

 yij1
...

yijT

 , Xij
T×kx

=

 x′ij1
...

x′ijT

 , Si
T×ks

=

 s′i1
...

s′iT

 ,

Dj
T×kd

=

 d′j1
...

d′jT

 , F
T×kf

=

 f ′1
...

f ′T

 , E∗ij
T×1

=

 ε∗ij1
...

ε∗ijT

 ,
Wij =

(
Xij ,Si,Dj

)
, θ =

(
β′ γ′ δ′

)′
, ψ∗ij =

(
ψ′ij ,

(
τ ij + µ∗ij

))′
and H =

[F, ιT ]. Then, we derive the consistent estimator of θ (called 3D-PCCE) by4

θ̂PCCE =

(
N1∑
i=1

N2∑
j=1

W′
ijMHWij

)−1(
N1∑
i=1

N2∑
j=1

W′
ijMHYij

)
(12)

4κ and ϕ cannot be identified due to the factor approximations and the within transfor-
mation.
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where MH = IT −H (H′H)
−1

H′. Following Pesaran (2006), it is straightfor-
ward to show that as (N1, N2, T ) → ∞, the PCCE estimator, (12) follows the
asymptotic normal distribution (see also Kapetanios and Shin, 2017):√

N1N2T
(
θ̂PCCE − θ

)
a∼ N (0,Σθ) ,

where the (robust) consistent estimator of Σθ is given by

Σ̂θ =
1

N1N2
S−1
θ RθS

−1
θ ,

Rθ =
1

N1N2 − 1

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

T

)(
θ̂ij − θ̂MG

)(
θ̂ij − θ̂MG

)′(W′
ijMHWij

T

)
,

Sθ =
1

N1N2

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

T

)
, θ̂MG =

1

N1N2

N1∑
i=1

N2∑
j=1

θ̂ij ,

where θ̂ij is the (ij) pairwise OLS estimator obtained from the individual re-
gression of Yij on (Wij ,H) in (11) for i = 1, ..., N1 and j = 1, ..., N2.
Next, we consider the 3D model (1) with the following general error compo-

nents by combining CTFEs and heterogeneous global factors:

uijt = µij + vit + ζjt + πijλt + εijt. (13)

It is straightforward to show that the 3D-within transformation (3) fails to
remove heterogeneous factors πijλt, because it is easily seen that

ũijt = π̃ij λ̃t + ε̃ijt

where λ̃t = λt − λ̄ with λ̄ = T−1
∑T
t=1 λt and π̃ij = πij − π.j − πi. + π.. with

π.j = N−1
1

∑N1

i=1 πij and πi. = N−1
2

∑N2

j=1 πij .
5 It is clear in the presence of the

nonzero correlation between xijt and λt that the 3D-within estimator of β is
biased.
We develop the two-step consistent estimation procedure. First, taking the

cross-section averages of (1) and (13) over i and j, we have:

ȳ..t = β′x̄..t + γ′s̄.t + δ′d̄.t + κ′qt +ϕ′z.. + µ.. + v̄.t + ζ̄ .t + π̄..λt + ε̄..t (14)

where v̄.t = N−1
1

∑N1

i=1 vit, ζ̄ .t = N−1
2

∑N2

j=1 ζjt and see (8) for other definitions.
Hence, we augment the model (1) with the cross-section averages as:

yijt = β′xijt + γ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + v∗ijt + ζ∗ijt + ε∗ijt, (15)

where v∗ijt = vit − πij v̄.t
π̄..

, ζ∗ijt = ζjt −
πij ζ̄.t
π̄..

, and see (11) for other definitions.
We rewrite (15) as

yijt = β′xijt + γ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + vit + ζjt + ε∗∗ijt, (16)

5Unless π̃ij = 0,ũijt 6= ε̃ijt. This holds only if factor loadings, πij are homogeneous for all
(i, j) pairs.
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where ε∗∗ijt = εijt − πij
π̄..
ε̄..t − πij v̄.t

π̄..
− πij ζ̄.t

π̄..
. Notice that as N1, N2 →∞, ε∗∗ijt →p

εijt since v̄.t →p 0, ζ̄ .t →p 0 and ε̄..t →p 0. Next, we apply the 3D-within
transformation (3) to (16), and obtain:6

ỹijt = β′x̃ijt + ψ̃
′
ij f̃t + ε̃∗∗ijt, (17)

where ψ̃ij = ψij − ψ.j − ψj. + ψ.., f̃t = ft − f̄ with f̄ = T−1
∑T
t=1 ft, and ft is

defined in (10). Rewriting (17) compactly as

Ỹij = X̃ijβ + F̃ψ̃ij + Ẽ∗∗ij , i = 1, ..., N1, j = 1, ..., N2 (18)

where

Ỹij
T×1

=

 ỹij1
...

ỹijT

 , X̃ij
T×kx

=

 x̃′ij1
...

x̃′ijT

 , F̃
T×kf

=

 f̃ ′1
...

f̃ ′T

 , Ẽ∗∗ij
T×1

=

 ε̃∗∗ij1
...

ε̃∗∗ijT

 .
Then, the 3D-PCCE estimator of β is obtained by

β̂PCCE =

(
N1∑
i=1

N2∑
j=1

X̃′ijMF̃ X̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijMF̃ Ỹij

)
(19)

where MF̃ = IT − F̃
(
F̃′F̃

)−1

F̃′ is the T × T idempotent matrix. Following

Pesaran (2006) and Kapetanios and Shin (2017), it is also straightforward to
show that as (N1, N2, T )→∞, the PCCE estimator, (19) follows the asymptotic
normal distribution:√

N1N2T
(
β̂PCCE − β

)
a∼ N (0,Σβ) ,

where the (robust) consistent estimator of Σβ is given by

Σ̂β =
1

N2
S−1
β RβS−1

β ,

Rβ =
1

N1N2 − 1

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

T

)(
β̂ij − β̂MG

)(
β̂ij − β̂MG

)′(X̃′ijMF̃ X̃ij

T

)
,

Sβ =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

T

)
, β̂MG =

1

N1N2

N1∑
i=1

N2∑
j=1

β̂ij ,

6 It is clear that γ, δ, κ, and ϕ cannot be identified due to the 3D-within transformation
and the factor approximation. Define θijt = ψ′ijft, then it is straightforward to show that

θ̃ijt = θijt−
(
θ̄ij. + θ̄.jt + θ̄i.t

)
+
(
θ̄..t + θ̄i.. + θ̄.j.

)
−θ̄... =

(
ψij −ψ.j −ψj. +ψ..

)′ (
ft − f̄

)
.
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where β̂ij is the (ij) pairwise OLS estimator obtained from the individual re-

gression of Ỹij on
(
X̃ij , F̃

)
in (18) for i = 1, ..., N1 and j = 1, ..., N2.

We can extend the proposed approach to the 3D panels with heterogeneous
slope parameters:

yijt = β′ijxijt+γ
′
jsit+δ

′
idjt+κ

′
ijqt+ϕ

′zij+uijt, i = 1, ..., N1, j = 1, ..., N2, t = 1, ..., T.
(20)

In this case we can develop the mean group estimators for (2), (7) and (13) in
a straightforward manner (e.g. Pesaran, 2006; Kapetanios and Shin, 2017):

β̂W,MG =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijX̃ij

)−1 (
X̃′ijYij

)

θ̂MGCCE =
1

N1N2

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

)−1 (
W′

ijMHYij

)
β̂MGCCE =

1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

)−1 (
X̃′ijMF̃ Ỹij

)

3 Cross-section Dependence (CD) Test

We discuss the extent of cross-section dependence in the 3D panel data models.
Following Pesaran (2015) and Bailey et al. (2016, hereafter BKP), we can show
that the extent of CSD is captured by non-zero covariance between uijt and
ui′j′t for i 6= i′ and j 6= j, denoted as σijt,u. Here, the extent of CSD involves

both N1 and N2, and thus relates to the rate at which 1
N1N2

N1∑
i=1

N2∑
j=1

σijt,u declines

with the product, N1N2.
First, we consider the 3D model (1) with country-time effects (2). Following

BBMP, we make the following random effects assumptions:

µij ∼ iid
(
0, σ2

µ

)
, vit ∼ iid

(
0, σ2

v

)
, ζjt ∼ iid

(
0, σ2

ζ

)
, εijt ∼ iid

(
0, σ2

ε

)
and µij , vit, ζjt and εijt are pairwise uncorrelated. Rewrite (2) sequentially as

uij
T×1

= µijιT + vi + ζj + εij , i = 1, ..., N1, j = 1, ..., N2,

ui
N2T×1

= µi ⊗ ιT + ιN2
⊗ vi + ζ + εi, i = 1, ..., N1,

u
N1N2T×1

= µ⊗ ιT + V + ιN1
⊗ ζ + ε (21)

where

uij
T×1

=

 uij1
...

uijT

 , vi
T×1

=

 vi1
...
viT

 , ζj
T×1

=

 ζj1
...
ζjT

 , εij
T×1

=

 εij1
...

εijT

 ,
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ui
N2T×1

=

 ui1
...

uiN2

 , µi
N2×1

=

 µi1
...

µiN2

 , ζ
N2T×1

=

 ζ1
...
ζN2

 , εi
N2T×1

=

 εi1
...

εiN2

 ,

u
N1N2T×1

=

 u1

...
uN1

 , µ
N1N2×1

=

 µ1
...
µN1

 , V
N1N2T×1

=

 ιN2
⊗ v1

...
ιN2 ⊗ vN1

 , ε
N1N2T×1

=

 ε1

...
εN1


(22)

Then, it is easily seen that (see also BBMP):

Cov (u)
N1N2T×N1N2T

= IN1N2
⊗
(
σ2
µJT

)
+IN1

⊗JN2
⊗
(
σ2
vIT
)
+JN1

⊗
(
σ2
ζIN2T

)
+σ2

εIN1N2T

(23)
Notice that the CTRE model imposes very limited structure of CSD, because
for i 6= i′ and j 6= j′, we have:

E[uijtuij′t] = σ2
v, E[uijtuij′t] = σ2

ζ and E[uijtui′j′t] = 0. (24)

This suggests that the covariance between uijt and ui′jt is common σ2
v for all

i = 1, ..., N1 while the covariance between uijt and uij′t is common σ2
ζ for all

j = 1, ..., N2. Further, it imposes zero covariance between uijt and uij′t′.
Next, we consider the 3D model with the two-way heterogeneous factor spec-

ification, (7). In this case it is straightforward to derive:

u
N1N2T×1

= µ⊗ ιT + π ⊗ λT + ε (25)

where

π
N1N2×1

=

 π1

...
πN1

 , πi
N2×1

=

 πi1
...

πiN2

 , λT

T×1

=

 λ1

...
λT

 ,
and see (22) for other definitions. The covariance matrix for u in (25) is:

Cov (u)
N1N2T×N1N2T

= IN1N2
⊗
(
σ2
µJT

)
+ (ππ′)⊗

(
σ2
λIT

)
+ σ2

εIN1N2T (26)

Thus, the specification (25) can capture CSD by non-zero covariances between
uijt and ui′j′t for i 6= i and j 6= j by

E[uijtuij′t] = πijπij′σ
2
λ, E[uijtui′jt] = πijπi′jσ

2
λ, E[uijtui′j′t] = πijπi′j′σ

2
λ.
(27)

Next, we consider the 3D model with more general error components, (13).
Combining the above results, it is straightforward to derive:

u
N1N2T×1

= µ⊗ ιT + V + ιN1
⊗ ζ + π ⊗ λT + ε. (28)

Thus, the covariance matrix for u in (28) is given by

Cov (u)
N1N2T×N1N2T

= IN1N2 ⊗
(
σ2
µJT

)
+ IN1 ⊗ JN2 ⊗

(
σ2
vIT
)

(29)

+JN1 ⊗
(
σ2
ζIN2T

)
+ (ππ′)⊗

(
σ2
λIT

)
+ σ2

εIN1N2T

10



This model can capture CSD by non-zero covariances between uijt and ui′j′t for
i 6= i′ and j 6= j′, given by

E[uijtuij′t] = πijπij′σ
2
λ+σ2

v, E[uijtui′jt] = πijπi′jσ
2
λ+σ2

ξ , E[uijtui′j′t] = πijπi′j′σ
2
λ.

(30)
Comparing (24), (27) and (30), we find that the CTFE specification in (2)

can only accommodate non-zero covariances locally, but it also imposes the same
covariance for all i = 1, ..., N1 and j = 1, ..., N2, respectively. Such restrictions
are too strong to hold in practice.7 On the contrary our proposed error com-
ponents specification (13) can accommodate non-zero covariances both locally
and globally.
Notice that vit and ζjt are related to the local-time factors. In order to

examine whether they exhibit weak or strong CSD, we consider the following
heterogeneous local factors specifications:

vit = viτ t and ζjt = ζjτ
∗
t

where τ t and τ∗t are the origin and the destination-specific local common factors,
respectively. Then, (13) can be replaced by

uijt = µij + viτ t + ζjτ
∗
t + εijt. (31)

This specification implies that the exporter, i, reacts heterogeneously to the
common import market conditions, τ t and the importer, j, reacts heteroge-
neously to the common export market conditions, τ∗t . Recently, Kapetanios
and Shin (2017) propose a more general hierarchical multi-factor error compo-
nents specification:

uijt = µij + viτ it + ζjτ
∗
jt + πijλt + εijt. (32)

Within this model, we can distinguish between three types of CSD: (i) the
strong global factor, λt which influences the (ij) pairwise interactions (of N1N2

dimension); (ii) the semi-strong local factors, τ it and τ∗jt, which influence origin
or destination countries separately (each of N1 or N2 dimension); and (iii) the
weak CSD idiosyncratic errors, εijt. We expect that this kind of generalisation
would be most natural within the 3D panel data models. Following BBMP, we
assume:

µij ∼ iid
(
0, σ2

µ

)
, τ it ∼ iid

(
0, σ2

τ

)
, τ∗jt ∼ iid

(
0, σ2

τ∗
)
, λt ∼ iid

(
0, σ2

λ

)
, εijt ∼ iid

(
0, σ2

ε

)
and µij , τ it, τ

∗
jt, λt and εijt are mutually independent.

8 It is clear that the
model (32) can capture CSD by non-zero covariances between uijt and ui′j′t for
i 6= i′ and j 6= j, given by

E[uijtuij′t] = v2
i σ

2
τ + πijπij′σ

2
λ, E[uijtui′jt] = ζ2

jσ
2
τ∗ + πijπi′jσ

2
λ

7 In the two-way error components with individual effects and time effects, the cross-section
correlation is the same for all cross-section pairs. Serlenga and Shin (2007) show that such
specification would produce very misleading results in the presence of heterogeneous strong
CSD in the 2D panel data model.

8This assumption is still more general than the random effects assumptions made in BBMP.
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E[uijtui′j′t] = πijπi′j′σ
2
λ. (33)

The covariance structure in (33) is clearly more general than (30).
We now develop a diagnostic test for the null hypothesis of residual cross-

section independence and the estimation of the exponent of cross-sectional
dependence in the triple-index panel data models. Those are evaluated using
the residuals obtained respectively from (5), (11) and (18), which we denote
as eij = (eij1, ..., eijT )

′. In particular, we have eij = Ỹij − X̃ijβ̂W for the
model (5), eij = MHYij −MHWij θ̂PCCE for the model (11), and finally
eij = MF̃ Ỹij −MF̃ X̃ijβ̂PCCE for the model (18).

The proposed cross-section dependence (CD) test is a modified counterpart
of an existing CD test proposed by Pesaran (2015). For convenience, we rep-
resent eij as the (ij) pair using the single index n = 1, ..., N1N2, and compute
the pair-wise residual correlations between n and n′ cross-section units by

ρ̂nn′ (= ρn′n) =
e′nen′√

(e′nen) (e′n′en′)
, n, n′ = 1, ..., N1N2 and n 6= n′.

Then, we construct the CD statistic by

CD =

√
2

N1N2 (N1N2 − 1)

N1N2−1∑
n=1

N1N2∑
n′=n+1

√
T ρ̂nn′ (34)

Pesaran derives that the CD test has the limiting N(0, 1) distribution under the
null hypothesis of cross-sectional error independence, namely H0 : ρ̂nn′ = 0 for
all n, n′ = 1, ..., N1N2 and n 6= n′. Following BKP, Pesaran further shows that
the CD statistic, (34) can also be applicable to testing the null hypothesis of
weak cross-sectional error dependence.9 As an extension one can also construct
hierarchical CD tests based on 2D sub-dataset out of the 3D dataset.
Following BKP, we introduce the exponent of cross-sectional dependence

based on the double cross sectional averages defined as ū..t = (N1N2)
−1∑N1

i=1

∑N2

j=1 uijt.
If uijt’s are cross sectionally correlated across (i, j) pairs, V ar (ū..t) declines at
a rate that is a function of α, where α is defined as

lim
N1N2→∞

(N1N2)
−α

λmax (Σu)

and Σu is the N1N2 ×N1N2 covariance matrix of ut = (u11t, ..., uN1N2t)
′ with

λmax (Σu) denoting the largest egeinlaue. Clearly, V ar (ū..t) cannot decline
at rate faster than (N1N2)

−1 as well as it cannot decline at rate slower than
(N1N2)

α−1 with 0 ≤ α ≤ 1. Given that

V ar (ū..t) ≤ (N1N2)
−1
λmax (Σu) ,

9Consider the effects of the jth factor on the ith error, and suppose that the factor loadings
take nonzero values for Mj out of the N cross-section units. The degree of cross-sectional
dependence due to the jth factor can be measured by αj = ln(Mj)/ ln(N), and the overall
degree of CSD by α = maxj αj , and α ∈ [0, 1], with 1 indicating the highest CSD. Then, the
implicit null is given by Hw

0 : α < 1
2
. See BKP for more details.
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we find that α defined by (N1N2)
−1
λmax (Σu) = O

(
Nα−1

)
will provide an

upper bound for V ar (ū..t). The extent of CSD depends on the nature of factor
loadings in the following factor-based errors:

uijt = πijλt + εijt.

If the average of the heterogenous loading parameters, πij , denoted µπ, is
bounded away from zero, the cross-sectional dependence will be strong, in which
case, (N1N2)

−1
λmax (Σu) and V ar (ū..t) are both O (1), which yields α = 1.

Furthermore, for 1/2 < α ≤ 1, BKP propose the following bias-adjusted
estimator to consistently estimate α:

α̊ = 1 +
1

2

ln
(
σ̂2
u..t

)
ln(N1N2)

−
ln
(
µ̂2
π

)
2 ln(N1N2)

− ĉN1N2

2
[
N1N2 ln (N1N2) σ̂2

u..t

] (35)

where σ̂2
u..t = T−1ΣTt=1ū

2
..t, ĉN1N2

= ̂σ̄2
N1N2

= (N1N2)
−1∑N1

i=1

∑N2

j=1 σ̂
2
ij and

σ̂2
ij = T−1ΣTt=1ε̂

2
ijt is the ijth diagonal element of the estimated covariance

matrix, Σ̂ε with ε̂ijt = uijt − δ̂ij ū..t and δ̂ij is the OLS estimator from the
regression of uijt on ū..t. BKP also discuss that a suitable estimation of µ2

π can
be derived, noticing that µπ is the mean of the population regression coeffi cient
of uijt on ũ..t = ū..t/σ̂ū..t for units uijt that have at least one non-zero loading,
and those units are selected using Holm’s (1979) multiple testing approach.
In the empirical section we apply the above 3D extension of the BKP estima-

tion and testing techniques directly to the residuals eijt obtained respectively
from (5), (11) and (18). We also evaluate the confidence band for the esti-
mated CSD exponent by employing the test statistic defined in (B47) in BKP’s
Supplementary Appendix VI.

4 Extensions

We provide two extensions of the proposed estimation techniques into unbal-
anced panels and four dimensional (4D) models. Such extensions would be
challenging as they involve several layers of factor specifications.

4.1 Unbalanced Panels

In practice, we may be faced with the unbalanced panel data. Notice, however,
that an issue of unbalanced panels or missing data has been almost neglected
even in literature on the 2D panels with unobserved factors or interactive ef-
fects. Kapetanios and Pesaran (2005) briefly deal with it in their Monte Carlo
studies. Bai et al. (2015) investigate the unbalanced 2D panel data model with
interactive effects, and propose the functional principal components analysis
and the EM algorithm. Via simulation studies they find that the EM-type esti-
mators are consistent for both smooth and stochastic factors, though no asymp-
totic analysis is provided. For the error components model (2), the 3D within

13



transformation fails to fully eliminate the fixed effects. BMW thus extend the
Wansbeek and Kapteyn (1989) approach and derive the complex within trans-
formation, which is computationally quite demanding as it involves an inversion
of NT ×NT matrices. Thus, we expect that such extension of our proposed 3D
PCCE estimation into unbalanced panels would be more challenging.
We now introduce a vector of selection indicators for each pair (i, j), sij =

(sij,1, ..., sij,T )
′, where sij,t = 1 if time period t for pair (i, j) can be used in

estimation. We only use information on units where a full set of data are ob-
served. Therefore, sij,t = 1 if and only if (xijt, yijt) is fully observed; otherwise,
sij,t = 0. Following Wooldridge (2010), we assume that selection is ignorable
conditional on

(
xijt, sit,djt,qt, zij , µij , λt

)
:

E
(
yit|xijt, sit,djt,qt, zij , µij , λt, si

)
= E

(
yit|xijt, sit,djt,qt, zij , µij , λt

)
.

Let n =
∑N1

i=1

∑N2

j=1

∑T
t=1 sij,t be the total number of observations. Also de-

fine nt =
∑N1

i=1

∑N2

j=1 sij,t and nij =
∑T
t=1 sij,t as the number of cross-section

pairs observed for time period t and the number of time periods observed
for pair (i, j). Similarly, define ni =

∑N2

j=1

∑T
t=1 sij,t, nj =

∑N1

i=1

∑T
t=1 sij,t,

nit =
∑N2

j=1 sij,t and njt =
∑N1

i=1 sij,t, respectively. To simplify further analy-
sis we maintain the assumption:

(
mini ni,minj nj ,mint nt,min(ij) nij

)
→ ∞ or(

mint nt,min(ij) nij
)
→∞.10

Consider the 3D model (1) with the error components specification (7). We
multiply the model by the selection indicator to get:

ysijt = β′xsijt + γ′ssit + δ′dsjt + κ′qst +ϕ′zsij + µsij + πsijλt + εsijt, (36)

where yijt = sij,tyijt, xsijt = sij,txijt, ssit = sij,tsit, dsjt = sij,tdjt, qst = sij,tqt,
zsij = sij,tzij , µsij = sij,tµij , π

s
ij = sij,tπij , and εsijt = sij,tεijt. Applying the

cross-section averages of (36) over i and j, we obtain:

ȳs..t = β′x̄s..t + γ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄s..t + µ̄s..t + π̄s..tλt + ε̄s..t (37)

where ȳs..t = 1
nt

∑N1

i=1

∑N2

j=1 sij,tyijt =
∑N1

i=1 witȳ
s
i.t is expressed as a weighted

average with wit = nit/nt and ȳsi.t = n−1
it

∑N2

j=1 sij,tyijt.
11 Similarly for x̄s..t,

z̄s..t, µ̄
s
..t, π̄

s
..t and ε̄s..t. Further, s̄s.t =

∑N1

i=1 witsit, d̄s.t =
∑N2

j=1 wjtdjt with
wjt = njt/nt, and q̄st = qt. As nt →∞,

z̄s..t = z̄+op (1) , µ̄s..t = µ̄+op (1) , π̄s..t = π̄+op (1) and ε̄s..t = ε̄..t+op (1) (38)

where z̄ = (N1N2)
−1∑N1

i=1

∑N2

j=1 zij →p E (zij), µ̄ = (N1N2)
−1∑N1

i=1

∑N2

j=1 µij →p

0, π̄ = (N1N2)
−1∑N1

i=1

∑N2

j=1 πij →p E (πij) 6= 0 and ε̄..t = (N1N2)
−1∑N1

i=1

∑N2

j=1 εijt →p

0. Using (38), we rewrite (37) as

ȳs..t = β′x̄s..t + γ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄ + µ̄+ π̄λt + ε̄..t + op (1)

10For factor approximation by cross-section averages or the principal components to be
valid, we still require min(ij) nij →∞, see Pesaran (2006) and Bai (2009).
11 ȳs..t can be expressed as a (column sum) weighted average

∑N2
j=1 wjtȳ

s
.jt with wjt = njt/nt

and ȳs.jt = n−1jt
∑N1
i=1 sij,tyijt.

14



Hence, λt can be approximated by

λt '
1

π̄

{
ȳs..t −

(
β′x̄s..t + γ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄ + µ̄+ ε̄..t

)}
.

Using these results we can augment the model (36) with the cross-section aver-
ages as follows:

ysijt = β′xsijt + γ′ssit + δ′dsjt +ψ′ij̊f
s
t + τsij + µsij + ε∗sijt, (39)

where τsij = sij,tτ ij , ε∗sijt = sij,tε
∗
ijt and

f̊st = sij,tf
s
t with fst =

(
ȳs..t, x̄

s′
..t, s̄

s′
.t , d̄

s′
.t ,q

′
t

)′
(40)

Collecting only the nij observations with sij,t = 1 from (39), we have:

Yij = Xijβ+Sijγ+Dijδ+Fijψij+
(
τ ij + µij

)
ιnij +E∗ij = Wijθ+Hijψ

∗
ij+E∗ij
(41)

where Wij =
(
Xij ,Sij ,Dij

)
, θ =

(
β′ γ′ δ′

)′
, ψ∗ij =

(
ψ′ij ,

(
τ ij + µij

))′
,

Hij =
[
Fij , ιnij

]
and

Yij
nij×1

=

 yij(1)

...
yij(nij)

 , Xij
Tij×kx

=

 x′ij(1)

...
x′ij(nij)

 , Sij
Tij×ks

=

 s′i(1)

...
s′i(nij)

 ,

Dij
nij×kd

=

 d′j(1)

...
d′j(nij)

 , Fij
nij×kf

=

 fs′(1)

...
fs′(nij)

 , Eij
Tij×1

=

 ε∗ij(1)

...
ε∗ij(nij)

 .
Here we express the time index inside (.) to highlight different initial and last
time periods respectively for each cross-section pair (ij). Then, the 3D-PCCE
estimator of θ is obtained by

θ̂PCCE =

(
N1∑
i=1

N2∑
j=1

W′
ijMHij

Wij

)−1(
N1∑
i=1

N2∑
j=1

W′
ijMHij

Yij

)
(42)

where MHij = ITij −Hij

(
H′ijHij

)−1
H′ij .

Next, we consider the 3D model (1) with the general error components spec-
ification (13). To develop the two-step consistent estimation procedure for un-
balanced panels, we multiply the model by sij,t = 1 to get:

ysijt = β′xsijt + γ′ssit + δ′dsjt +κ′qst +ϕ′zsij + µsij + vsit + ζsjt + πijλ
s
t + εsijt (43)

where ysijt = sij,tyijt and similarly for others. Taking the cross-section averages
of (43) over i and j, we have:

ȳs..t = β′x̄s..t + γ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄s..t + µ̄s..t + v̄s.t + ζ̄
s
.t + π̄s..tλt + ε̄s..t (44)
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where v̄s.t =
∑N1

i=1 witvit with wit = nit/nt, ζ̄
s
.t =

∑N2

j=1 wjtζjt with wjt = njt/nt,
and see (37) for other definitions. As nt →∞,

v̄s.t = v̄ + op (1) and ζ̄
s
.t = ζ̄ + op (1) (45)

where v̄ = N−1
1

∑N1

i=1 vit →p 0 and ζ̄ = N−1
2

∑N2

j=1 ζjt →p 0. Using (38) and
(45), we can approximate ȳs..t and λt by

ȳs..t = β′x̄s..t + γ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄ + µ̄+ v̄ + ζ̄ + π̄λt + ε̄..t + op (1)

λt =
1

π̄

{
ȳs..t −

(
β′x̄s.t + γ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄ + µ̄+ v̄ + ζ̄ + ε̄..t

)}
+ op (1) .

Hence, we augment the model (43) with the cross-section averages as:

ysijt = β′xsijt + γ′ssit + δ′dsjt +ψ′ijf
s
t + τsij + µsij + vsit + ζsjt + ε∗sijt, (46)

where ε∗sijt = sij,tε
∗
ijt with ε

∗
ijt = εijt − πij

π̄

(
ε̄..t + µ̄+ v̄ + ζ̄

)
→p εijt and see

(39) for other definitions.
To derive the appropriate 3D-within transformation directly for unbalanced

panels (46), we consider the simple specification:

ysijt = µsij + vsit + ξsjt + εsijt, (47)

and examine the property of the transformed data given by

ỹsijt = ysijt + sij,t
(
−ȳsij· − ȳs·jt − ȳsi·t + ȳs··t + ȳs·j· + ȳsi·· − ȳs···

)
(48)

Then, it is straightforward to show:(
−ȳsij· − ȳs·jt − ȳsi·t + ȳs··t + ȳs·j· + ȳsi·· − ȳs···

)
= −

(
µij + vit + ξjt

)
+D1 +D2 +D3 +D4 +D5

where

D1 = −

v̄sij. − N2∑
j=1

nij
ni
v̄sij.

+

 N1∑
i=1

nij
nj
v̄sij. −

N1∑
i=1

ni
n

N2∑
j=1

nij
ni
v̄sij.



D2 = −
(
ξ̄
s
ij. −

N1∑
i=1

nij
nj
ξ̄
s
ij.

)
+

 N2∑
j=1

nij
ni
ξ̄
s
ij. −

N2∑
j=1

nj
n

N1∑
i=1

nij
nj
ξ̄
s
ij.


D3 = −

(
µ̄.jt −

T∑
t=1

njt
nj
µ̄.jt

)
−
(
µ̄i.t −

T∑
t=1

nit
ni
µ̄i.t

)
+

(
µ̄..t −

T∑
t=1

nt
n
µ̄..t

)

D4 = −

v̄s.jt − N2∑
j=1

njt
nt
v̄s.jt

 , D5 = −
(
ξ̄i.t −

N1∑
i=1

nit
nt
ξ̄i.t

)
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with v̄sij. = 1
nij

∑T
t=1 sij,tvit, ξ̄

s
ij. = 1

nij

∑T
t=1 sij,tξjt, µ̄

s
.jt = 1

njt

∑N1

i=1 sij,tµij ,

µ̄si.t = 1
nit

∑N2

j=1 sij,tµij , µ̄
s
..t = 1

nt

∑N1

i=1

∑N2

j=1 sij,tµij , v̄
s
.jt = 1

njt

∑N1

i=1 sij,tvit,

and ξ̄
s
i.t = 1

nit

∑N2

j=1 ξjt. Notice in the balanced panels that D1 = D2 = D3 =

D4 = D5 = 0. Also, as
(
mini ni,minj nj ,mint nt,min(ij) nij

)
→ ∞, Di →p 0

for i = 1, ..., 5. Therefore, we obtain:(
−ȳsij· − ȳs·jt − ȳsi·t + ȳs··t + ȳs·j· + ȳsi·· − ȳs···

)
= −

(
µij + vit + ξjt

)
+ op (1) (49)

Using (49) and applying (48) to (47), we obtain the desired result:

ỹsijt = ε̃sijt, (50)

where ε̃sijt = εsijt − sij,t
(
ε̄sij· − ε̄s·jt − ε̄si·t + ε̄s··t + ε̄s·j· + ε̄si·· − ε̄s···

)
.

We now apply the 3D-within transformation (48) to (46) and obtain:

ỹsijt = β′x̃sijt + ψ̃
′
ij̊f

s
ijt + ε̃∗sijt, (51)

where ψ̃ij = ψ′ij −
(

1
njt

∑N1

i=1ψ
′
ij

)
−
(

1
nit

∑N2

j=1ψ
′
ij

)
+
(

1
nt

∑N1

i=1

∑N2

j=1ψ
′
ij

)
,

f̊sijt = sij,tf̃
s
ij with f̃sij = fst − f̄sij and f̄sij = n−1

ij

∑T
t=1 sij,tf

s
t , and fst is defined in

(40). Collecting only the nij observations with sij,t = 1 from (51), we have:

Ỹij = X̃ijβ + F̃ijψ̃ij + Ẽ∗ij , (52)

where

Ỹij
nij×1

=

 ỹij(1)

...
ỹij(nij)

 , X̃ij
nij×kx

=

 x̃′ij(1)

...
x̃′ij(nij)

 , F̃ij
nij×kf

=


f̃s′ij(1)

...
f̃s′ij(nij)

 , Ẽ∗ij
nij×1

=

 ε̃∗ij(1)

...
ε̃∗ij(nij)

 .
As before we employ the time index inside (.) to highlight different initial and
last time periods respectively for each cross-section pair (ij). Then, the 3D-
PCCE estimators of β are obtained by

β̃PCCE =

(
N1∑
i=1

N2∑
j=1

X̃′ijMijX̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijMijỸij

)
(53)

where Mij = IT − F̃ij

(
F̃′ijF̃ij

)−1

F̃′ij . As
(
mint nt,min(ij) n(ij)

)
→ ∞, both

PCCE estimators, (42) and (53), will follow the asymptotic normal distribution.

4.2 4D Model Extensions

BMW propose the following baseline 4D model:

yijst = x′ijstβ + uijst, (54)
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uijst = µijs + θijt + ζjst + vist + εijst (55)

for i = 1, ..., N1, j = 1, ..., N2, s = 1, ..., N3, and t = 1, ..., T . BMW derive the
following 4D within transformation to eliminate pair-wise interaction effects,
µijs, vist, ζjst, and λijt from (54):

ỹijst = yijst − ȳ.jst − ȳi.st − ȳij.t − ȳijs. + ȳ..st + ȳ.j.t + ȳ.js. + ȳi..t + ȳi.s. + ȳij..

−ȳ...t − ȳ..s. − ȳ.j.. − ȳi... − ȳ.... (56)

and estimate β consistently from the transformed specification:

ỹijst = x̃′ijstβ + uijst. (57)

Further, BBMP propose the feasible GLS random effects estimator of β under
the assumption that uijst and its components individually have zero mean, and
error components are pairwise uncorrelated.
To introduce CSD explicitly into (54), we consider the following extension:

yijst = x′ijstβ + µijs + θijt + ζjst + vist + πijsλt + εijst, (58)

where λt is the global factor with heterogeneous coeffi cients πijs. In the presence
of such CSD, both the 4D-FE estimator and the 4D-RE estimator would be likely
to be biased due to the correlation between xijst and λt. Thus, we develop the
two-step consistent estimation procedure. Taking the cross-section averages of
(58) over i, j and s, we obtain:

ȳ...t =
1

N1

N1∑
i=1

1

N2

N2∑
j=1

1

N

N3∑
s=1

(
β′xijst + µijs + θijt + ζjst + vist + πijsλt + εijst

)
= β′x̄...t + µ̄... + θ̄..t + ζ̄ ..t + v̄..t + π̄...λt + ε̄...t (59)

where x̄...t = 1
N1

∑N1

i=1
1
N2

∑N2

j=1
1
N

∑N3

s=1 xijst, ε̄...t = 1
N1

∑N1

i=1
1
N2

∑N2

j=1
1
N

∑N3

s=1 εijst,

µ̄... = 1
N1

∑N1

i=1
1
N2

∑N2

j=1
1
N

∑N3

s=1 µijs, π̄... = 1
N1

∑N1

i=1
1
N2

∑N2

j=1
1
N

∑N3

s=1 πijs,

θ̄..t = 1
N1

∑N1

i=1
1
N2

∑N2

j=1 θijt, ζ̄ ..t = 1
N2

∑N2

j=1
1
N

∑N3

s=1 ζjst, and v̄..t = 1
N1

∑N1

i=1
1
N

∑N3

s=1 vist.
From (59) we have:

λt =
1

π...

{
ȳ...t −

(
β′x̄...t + µ̄... + θ̄..t + ζ̄ ..t + v̄..t + π̄...λt + ε̄...t

)}
.

Thus, we derive the cross-section augmented version of (58) by

yijst = β′xijst +ψ′ijsft + µijs + θijt + ζjst + vist + ε∗ijst, (60)

where ft = (ȳ...t, x̄
′
...t)
′, ψ′ijs =

(
ψ0,ijs,ψ

′
ijs

)
=
(
πijs
π̄...

,−πijsπ̄...
β′
)
and ε∗ijst =

εijst − πijs
π̄...

(
ε̄...t + θ̄..t + ζ̄ ..t + v̄..t

)
. As N1, N2, N3 →∞, ε∗ijst →p εijst because

of the following approximations: µ̄... →p 0, θ..t →p 0, ζ ..t →p 0, v..t →p 0, and
ε̄...t →p 0.
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Next, we apply the 4D-within transformation (56) to (60), and obtain:

ỹijst = β′x̃ijst + ψ̃
′
ijsf̃t + ε̃∗ijt. (61)

where

ψ̃
′
ijs =

(
ψijs −ψ.js −ψi.s −ψij. +ψ..s +ψ.j. +ψi.. −ψ...

)′
and f̃t =

(
ft − f̄

)
.

We rewrite (61) as
Ỹijs = X̃ijsβ + F̃ψ̃ijs + ε̃∗ijs, (62)

where

Ỹijs
T×1

=

 ỹijs1
...

ỹijsT

 , X̃ijs
T×kx

=

 x̃′ijs1
...

x̃′ijsT

 , F̃
T×kf

=

 f̃ ′1
...

f̃ ′T

 .
Then, it is straightforward to derive the PCCE estimator of β by

β̂PCCE =

(
N1∑
i=1

N2∑
j=1

N3∑
s=1

X̃′ijsMF̃X̃ijs

)−1(
N1∑
i=1

N2∑
j=1

N3∑
s=1

X̃′ijsMF̃Ỹijs

)
, (63)

where MF̃ = IT − F̃
(
F̃′F̃

)−1

F̃′.

Further, we can follow Kapetanios and Shin (2017) and develop 4D models
with the hierarchical multi-factor error structure. To this end define the global
factor λt which affects all (ijs) pairs, the regional factors τ it, τ∗jt, τ

∗∗
st , and finally

the local factors τ ijt, τ∗ist and τ
∗∗
jst. This logic suggests the following model:

yijst = x′ijstβ+µijs+vjsτ it+v
∗
isτ jt+v

∗∗
ij τst+ζsτ ijt+ζ

∗
jτ
∗
ist+ζ

∗∗
i τ
∗∗
jst+πijλt+εijst.

(64)
Such higher-dimensional setups involve several layers of factor specifications
(a number that grows with the dimensions), rendering the estimation of and
inference on models non-trivial and challenging.

5 Monte Carlo Study

In this section we conduct the Monte Carlo studies and investigate the small
sample properties of the CTFE and two versions of the PCCE estimator for the
models, (4), (11) and (17), respectively. We consider the two data generating
processes (DGP). We construct DGP1 by

yijt = β′xijt + µij + πijλt + εijt, (65)

xijt = µxij + µij + πxijλt + vijt, (66)

for i = 1, ..., N1, j = 1, ..., N2, and t = 1, ..., T . The global common fac-
tor, λt and idiosyncratic errors, εijt and vijt are generated independently as
iid processes with zero mean and unit variance: namely, λt ∼ iidN (0, 1),
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εijt ∼ iidN (0, 1) and vijt ∼ iidN (0, 1). We generate pairwise individual effects
independently as µij ∼ iidN (0, 1) and µxij ∼ iidN (0, 1). The factor loadings,
πij and πxij , are then independently generated from U [1, 2] random variables.

Next, we construct DGP2 by

yijt = β′xijt + µij + vit + ζjt + πijλt + εijt. (67)

xijt = µxij + µij + πxijλt + vijt, , (68)

for i = 1, ..., N1, j = 1, ..., N2, and t = 1, ..., T . In addition, we follow BBMP
and generate vit and ζjt independently as:

vit ∼ U (−1, 1) and ζjt ∼ U (−1, 1) for i = 1, ..., N1, j = 1, ..., N2, t = 1, ...T.

In both DGP1 and DGP2 we set β = 1.
For each experiment we evaluate the following summary statistics:

Bias: β̂R−β0, where β0 (= 1) is the true parameter value, and β̂R = R−1
∑R
r=1 β̂r

is the mean of β̂r.

Root mean square error (RMSE):

√
R−1

∑R
r=1

(
β̂r − β0

)2

.

Size: the empirical rejection probability of the t-statistic for the null hypothesis
β = β0 against β 6= β0 at the 5% significance.

We conduct each experiment 1,000 times for the (N1, N2, T ) triples with
N1, N2 = {25, 49, 100}12 and T = {50, 100, 200, 400}. The simulation results
are provided respectively in Table 1 for DGP1 and Table 2 for DGP2.
In Table 1 we find that biases of the 2D and 3D PCCE estimators of β

are mostly negligible even for the relatively small sample size at (N1, N2, T ) =
(25, 25, 50). On the other hand, the CTFE estimator displays substantial bi-
ases for most cases. As N increases, the biases become smaller but still non-
negligible. RMSE results are qualitatively similar to the bias patterns. RMSEs
of both PCCE estimators decrease sharply with N1 (N2) or T whilst RMSEs of
the CTFE estimator fall only with N1 (N2). Turning to the empirical sizes of
the t-test for the null hypothesis, β̂ = β0 (= 1), we find that the CTFE over-
rejects the null in all cases and tends to 1 as N1 (N2) or T rises. By contrast
the size of the 2D PCCE estimator is reasonably close to the nominal 5% level
in all cases while the 3D PCCE estimator tends to slightly over-reject the null
when N1 or N2 is relatively small. As expected, overall performance of the 2D
PCCE estimator is the best under DGP1.

Simulation results in Table 2 are qualitatively similar to those in Table 1.
Biases of both PCCE estimators are almost negligible in all cases and their
RMSEs decrease rapidly with N1 (N2) or T . Empirical sizes of the t-test for
β̂ = β0 (= 1) are still close to the nominal 5% level in almost all cases for the
2D PCCE estimator. The 3D PCCE estimator tends to slightly over-reject the
null, but its size performance improves quickly asN1 (N2) or T increases. On the

12Namely, 25 are pairs of 5 units, 49 pairs of 7 units and 100 pairs of 10 units.
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Table 1: Simulation results for β under the DGP1

CTFE
Bias

(N1N2, T ) 50 100 200 400
25 0.0829 0.0832 0.0833 0.0822
49 0.0347 0.0341 0.0338 0.0344
100 -0.0307 -0.0315 -0.0313 -0.0316

RMSE
(N1N2, T ) 50 100 200 400
25 0.0914 0.0871 0.0854 0.0832
49 0.0420 0.0383 0.0357 0.0353
100 0.0347 0.0336 0.0324 0.0322

Size
(N1N2, T ) 50 100 200 400
25 0.7610 0.9590 0.9980 1.0000
49 0.4020 0.6290 0.8810 0.9950
100 0.5530 0.8410 0.9910 1.0000

2D PCCE 3D PCCE
Bias

(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0017 0.0011 0.0014 0.0003 0.0017 0.0008 0.0012 0.0002
49 0.0006 -0.0005 0.0002 0.0004 0.0000 -0.0001 0.0000 0.0006
100 0.0004 -0.0005 -0.0001 -0.0003 0.0009 -0.0002 0.0000 -0.0003

RMSE
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0290 0.0202 0.0146 0.0101 0.0290 0.0202 0.0146 0.0101
49 0.0207 0.0156 0.0100 0.0071 0.0207 0.0156 0.0100 0.0071
100 0.0142 0.0103 0.0070 0.0051 0.0142 0.0103 0.0070 0.0051

Size
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.049 0.045 0.052 0.052 0.133 0.124 0.132 0.114
49 0.041 0.062 0.047 0.047 0.095 0.113 0.097 0.086
100 0.042 0.048 0.044 0.055 0.081 0.093 0.074 0.093

Notes: We report the simulation results for three estimators for DGP1, (65) and (66). CTFE
refers to the 3D within estimator given by (5), 2D PCCE is the PCCE estimator given by
(11) and 3D PCCE is the PCCE estimator given by (18).
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contrary the CTFE estimator suffers from substantial biases and size distortions,
and its performance does not improve in large samples. We note in passing
that such good performance of the 2D PCCE estimator is rather surprising as
we expect that the 3D PCCE estimator will dominate under DGP2. Overall
simulation results support the simulation findings reported under the 2D panels
by Kapetanios and Pesaran (2005) and Pesaran (2006).

Table 2: Simulation results for β under the DGP2

CTFE
Bias

(N1N2, T ) 50 100 200 400
25 0.0835 0.0829 0.0830 0.0827
49 0.0143 0.0144 0.0155 0.0156
100 -0.0365 -0.0371 -0.0362 -0.0370

RMSE
(N1N2, T ) 50 100 200 400
25 0.0921 0.0872 0.0850 0.0839
49 0.0272 0.0220 0.0194 0.0177
100 0.0400 0.0388 0.0371 0.0374

Size
(N1N2, T ) 50 100 200 400
25 0.7780 0.9450 1.0000 1.0000
49 0.1420 0.2060 0.3630 0.5650
100 0.7120 0.9400 0.9940 1.0000

2D PCCE 3D PCCE
Bias

(N1N2, T ) 50 100 200 400 50 100 200 400
25 -0.0001 0.0008 0.0009 0.0001 0.0012 0.0006 0.0009 0.0005
49 -0.0002 0.0000 0.0006 0.0001 -0.0001 0.0000 0.0005 0.0005
100 0.0000 -0.0001 0.0001 -0.0002 0.0001 -0.0003 0.0001 -0.0002

RMSE
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0295 0.0201 0.0145 0.0104 0.0368 0.0250 0.0181 0.0130
49 0.0208 0.0147 0.0102 0.0072 0.0238 0.0169 0.0120 0.0083
100 0.0148 0.0103 0.0069 0.0049 0.0161 0.0114 0.0076 0.0054

Size
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0510 0.0470 0.0630 0.0570 0.1290 0.1240 0.1330 0.1260
49 0.0480 0.0540 0.0460 0.0500 0.0910 0.1010 0.1070 0.0850
100 0.0620 0.0510 0.0450 0.0490 0.0930 0.0800 0.0660 0.0700

Notes: We report the simulation results for three estimators for DGP2, (67) and (68). CTFE
refers to the 3D within estimator given by (5), 2D PCCE is the PCCE estimator given by
(11) and 3D PCCE is the PCCE estimator given by (18).
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6 Empirical Application to the Gravity Model
of the Intra-EU Trade

Anderson and van Wincoop (2003) show that “The gravity equation tells us that
bilateral trade, after controlling for size, depends on the bilateral trade barriers
but relative to the product of their Multilateral Resistance Indices (MTR).”
Bilateral barrier relative to average trade barriers that both regions face with
all their trading partners. Omitting MTR induces potentially severe bias (e.g.
Baldwin and Taglioni, 2006). Subsequent research has focused on estimating the
model with directional country-specific fixed effects to control for unobservable
MTRs (e.g. Feenstra, 2004).
A large number of studies have established an importance of taking into

account multilateral resistance and bilateral heterogeneity, simultaneously, in
the 2D panels. Serlenga and Shin (2007) is the first paper to develop the panel
gravity model by incorporating observed and unobserved factors. Alternatively,
Behrens et al. (2012) develop the spatial econometric specification, to control for
multilateral cross-sectional correlations across trade flows. Mastromarco et al.
(2016b) compare the factor- and the spatial-based gravity models to investigate
the Euro impact on intra-EU trade flows over 1960-2008 for 190 country-pairs
of 14 EU and 6 non-EU OECD countries. They document evidence that the
CD test confirms that the factor-based model is more appropriate. Further-
more, Gunnella et al. (2015) propose the panel gravity models which accommo-
date both strong and weak CSD, simultaneously, through the use of unobserved
factors and endogenously selected spatial clusters estimated by the nonlinear
threshold techniques advanced by Kapetanios et al. (2014).
When we analyse the 3D panel gravity models, we should control for the

potential origin of biases presented by unobserved time-varying MTRs, if they
are correlated with covariates. Baltagi et al. (2003) propose the 3D panel data
model with CTFE specification. This approach has been popularly applied to
measure the impacts of (unobserved) MTRs of the exporters and the importers
in the structural gravity studies (e.g. Baltagi et al., 2015 and Chapter 10). As
discussed in Section 3, however, the 3D panel data model, typically estimated by
CTFE or CTRE estimators, fails to accommodate (strong and heterogeneous)
CSD. The presence of cross-sectional correlations across (ij) pairs suggests that
the appropriate econometric techniques be required, in order to avoid biased
and misleading estimation results.
In this regard we apply our proposed approach to the dataset covering

the period 1960-2008 (49 years) for 182 country-pairs amongst 14 EU mem-
ber countries (Austria, Belgium-Luxemburg, Denmark, Finland, France, Ger-
many, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, United
Kingdom).13 Our sample period consists of several important economic inte-
grations, such as the Custom Union in 1958, the European Monetary System in
13 It is the extended dataset analysed by Serlenga and Shin (2007), who provide the Data

Appendix for detailed data description and sources. Belgium and Luxemburg are treated as
a single country. Denmark, Sweden and The UK although nonmember countries, as part of
the EU, experienced similar history and faced similar legislation and regulation to euro area
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1979 and the Single Market in 1993, all of which can be regarded as promoting
intra-EU trades.14

We consider the following generalised panel gravity specification:

lnEXPijt = β0 + β1CEEijt + β2EMUijt + β3SIMijt + β4RLFijt + β5 lnGDPit
(69)

+ β6 lnGDPjt + β7RERt + γ1DISij + γ2BORij + γ3LANij + uijt

where the dependent variable, EXPijt is the export flow from country i to
country j at time t, CEE and EMU are dummies for European Community
membership and for European Monetary Union, SIM and RLF measure simi-
larity in size and difference in relative factor endowments, RER represents the
logarithm of common real exchange rates, GDPit and GDPjt are logged GDPs
of exporter and importer, and finally the logarithm of geographical distance
(DIS) and the dummies for common language (LAN) and for common border
(BOR) represent time-invariant bilateral barriers.
We report the estimation results of (69), employing the four estimators,

namely the two-way within estimator with uijt = µij + λt + εijt, the CTFE
estimator with uijt = µij + vit + ζjt + εijt, the 2D PCCE estimator with uijt =
µij + πijλt + εijt, and the 3D PCCE estimator with uijt = µij + vit + ζjt +
πijλt + εijt. We also report the CD test results applied to the residuals from
each of the four estimation methods and the estimates of the CSD exponent
(α). Following BKP, we compute the CD test and estimate α sequentially.
Following the structural gravity literature, our main focus is on investigating

the impacts of tij that contain both barriers and incentives to trade between i
and j.15 Here we focus on the two dummy variables, CEE (equal to one when
both countries belong to the European Community) and EMU (equal to one
when both trading partners adopt the same currency). Both are expected to
exert a positive impact on bilateral export flows. The main motivation behind
the EMU project is that a single currency will reduce the transaction costs within
member countries. But, the empirical evidence on the common currency effect
on trade flows is rather mixed. Rose (2001), Frankel and Rose (2002), Glick
and Rose (2002) and Frankel (2008), document a huge positive effect whilst a
number of studies report negative or insignificant effects (e.g., Persson, 2001,
Pakko and Wall, 2002, De Nardis and Vicarelli, 2003). More recent studies by
Serlenga and Shin (2007), and Mastromarco et al. (2016b), and Gunnella et al.
(2015) highlight an importance of controlling for strong CSD, and find a small
but significant effect (7 to 10%) of the euro on intra-EU trade flows.16

countries.
14To mitigate the potentially negative impact of the global financial crisis on our analysis,

we exclude the data after 2008
15 In the current study we cannot consistently estimate the coeffi cients associated with time-

invariant regressors, DISij , BORij , and LANij and/or because the within transformation
wipes out them. Similar identification issues are also applied to the coeffi cients on GDPit and
GDPjt. Following Serlenga and Shin (2007) and Chapter 3 we will investigate this issue in
future study.
16After the Brexit, the issue on potential benefits of joining the currency union will be
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In addition to the standard mass covariates, GDPit and GDPjt, we also con-
sider the impact of (logarithm of) bilateral real exchange rates (RER), which
is defined as the price of the foreign currency per the home currency unit and
is meant to capture the relative price effects. Further, following the New Trade
Theory advanced by Krugman (1979) and Helpman (1987), we add RLF and
SIM. RLF is the logarithm of the absolute value of the difference between per
capita GDPs of trading countries, and measures the difference in terms of rel-
ative factor endowments. The higher RLF results in a higher volume of inter-
industry trade and a lower share of intra-industry trade. SIM is the logarithm
of an index that captures the relative size of two countries in terms of GDP, and
is bounded between zero (absolute divergence in size) and 0.5 (equal country
size).
Table 3 reports the estimation results for the 3D panel gravity specification

in (69). The two-way FE estimation results are all statistically significant except
RER. The impacts of home and foreign country GDPs on exports are positive,
but surprisingly, the former is twice larger than the latter. The impact of
similarity in size (SIM) is negative and significant, inconsistent with a priori
expectations. Importantly, we find that trade and currency union memberships
(CEE and EMU) significantly boost export flows, though their magnitudes seem
to be too high. However, the CD test applied to the residuals rejects the null
of no or weak CSD convincingly. The estimate of α is 0.99 with the confidence
band containing unity, suggesting that the residuals are strongly correlated.
Thus, the FE estimation results are likely to be biased and unreliable.
Next, we turn to the CTFE estimation results, which has been popularly

applied in the structural gravity literature. This approach aims to control for
MTRs through bilateral pair-fixed effects and origin and destination country-
time fixed effects. The CD test results indicate that the CTFE residuals do not
suffer from any strong CSD, suggesting that the 3D within transformation may
be able to remove strong CSD. This rather surprising result is not supported by
the estimate of α, which is 0.91. Though the confidence band does not include
unity, this estimate is still pretty high and close to 1. Further, we find that all
the coeffi cients become insignificant except for CEE. Focusing on the impacts on
CEE and EMU, the former is still substantial (0.29) while the latter turns out
to be negligible (-0.011). Combining these results together, we may conclude
that the CTFE results are rather unreliable.
Moving to the 2D PCCE estimation results, we find that all the coeffi cients

are significant with the expected signs except for EMU. The impact of foreign
country GDP on exports is substantially larger than home GDP. The RER coef-
ficient is positive, confirming that a depreciation of the home currency increases
exports. The impact of CEE is smaller (0.186), but the EMU effect is insignif-
icant and negligible (0.017). But, the PCCE estimator still suffers from strong
CSD residuals together with the estimate of α being 0.87. This may explain the
conflict finding against the existing studies reporting a significant effect of the

more hotly debated. In retrospect, the UK Treasury made a bold prediction in 2003 that the
pro-trade effect of the Euro on UK would be over 40%.
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euro on trades in the 2D panels.
Finally, the 3D PCCE estimation results show that all the coeffi cients are

significant with expected signs. The CD test fails to strongly reject the null,
suggesting that this approach is able to successfully deal with strong and/or
weak CSD in the 3D panels. This is also supported by the smaller estimate of
α (0.77), which is close to a moderate range of weak CSD.17 Focusing on the
CEE and EMU impacts on exports, we find that the former turns out to be
still substantial (0.335) while the latter becomes modest at 0.081, close to the
consensus magnitudes reported in the recent 2D panel studies (e.g. Baldwin,
2006, Gunnella et al., 2015). Combining these results, we may conclude that
the 3D PCCE estimation results are mostly reliable, providing a general sup-
port for the thesis that the potential trade-creating effects of the Euro should
be viewed in the long-run historical and multilateral perspectives rather than
simply focusing on the formation of a monetary union as an isolated event.

The CTFE estimator is proposed to capture the (unobserved) multilateral
resistance terms and trade costs, which are likely to exhibit history and time
dependence (e.g. Herwartz and Weber, 2010). However, it fails to accommodate
strong cross-section correlations among MTRs, which are present in our sample
of the EU countries (confirmed by CD tests and CSD exponent estimates). To
capture such complex interlinkages among trading partners, we should model
the time-varying interdependency of bilateral export flows in a more flexible
manner than simply introducing deterministic country-time specific dummies.
Baldwin (2006) stresses an importance of taking into account the fact that many
omitted pair-specific variables reflect time-varying factors such as multilateral
trade costs or union membership. MTRs arise from the bilateral country-pair
specific reactions to global shocks or the local spillover effects across a small
number of countries or both. In order to avoid biased and misleading results,
we propose a novel econometric technique, called the 3D-PCCE estimator, which
is the first step to developing the multidimensional models with the hierarchical
multi-factor error structure whereby an external shock can alter the trade costs
for individual country relative to all other countries in a heterogeneous and
time-dependent way (e.g. Kapetanios and Shin, 2017).

7 Conclusion

Given the growing availability of the big dataset which contain information on
multiple dimensions, the recent literature on the panel data have focused more
on extending the two-way error components models to the multidimensional set-
ting. We propose novel estimation techniques to accommodate cross-sectional
error dependence within the 3D panel data models. Despite the massive devel-
opment of modelling residual CSD through unobserved factors in the 2D panel
data models (e.g. Pesaran, 2006; Bai, 2009), our approach is the first attempt
to introduce strong CSD into the multi-dimensional error components, and well

17BHP show that the values of α ∈ [1/2, 3/4) represent a moderate degree of CSD.
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Table 3: 3D panel gravity model estimation results for bilateral export flows
FE CTFE
Coeff se t-ratio Coeff se t-ratio

gdph 2.185 0.041 52.97
gdpf 1.196 0.041 28.98
sim -0.263 0.052 -5.069 -0.055 0.074 -0.754
rlf 0.031 0.006 5.011 0.006 0.005 1.294
rer 0.005 0.007 0.791 0.031 0.072 0.436
cee 0.302 0.014 22.05 0.290 0.017 16.99
emu 0.204 0.019 10.71 -0.011 0.036 -0.315

CD stat 620.1 -2.676
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.925 0.992 1.059 0.865 0.914 0.963
2D PCCE 3D PCCE
Coeff se t-ratio Coeff se t-ratio

gdph 0.289 0.095 3.033
gdpf 1.491 0.095 15.69
sim 0.042 0.105 0.401 1.032 0.111 9.290
rlf 0.007 0.005 1.420 -0.004 0.005 -0.748
rer 0.144 0.019 7.427 0.168 0.114 1.471
cee 0.187 0.014 13.20 0.335 0.022 15.10
emu 0.018 0.015 1.160 0.081 0.045 1.793

CD stat 76.11 -4.19
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.837 0.867 0.897 0.724 0.775 0.826

Notes: Using the annual dataset over 1960-2008 for 182 country-pairs amongst 14 EU

member countries, we estimate the 3D panel gravity specification, (69). FE stands for

the two-way fixed effects estimator with country-pair and time effects. CTFE refers to

the 3D within estimator given by (5). 2D PCCE estimator is given by (11) with factors

ft =
{
gdp.t, sim..t, rlf ..t, cee..t, rert, t

}
. 3D PCCE estimator is given by (18) with factors

ft =
{
sim..t, rlf ..t, rert, t

}
. CD test refers to testing the null hypothesis of residual cross-

sectional error independence or weak dependence and is defined in (34). α denotes the estimate

of CSD exponent jointly with the 90% confidence bands.

27



suited to the analysis of sophisticated error CSD across the triple or higher
dimensions.
We develop the two-step consistent estimation procedure, called the 3D-

PCCE estimator. We discuss the extent of cross-section dependence and develop
a diagnostic test for the null hypothesis of (pairwise) residual cross-section in-
dependence or weak dependence in the 3D panels. The empirical usefulness
and superiority of the proposed the 3D-PCCE estimator are demonstrated via
the Monte Carlo studies and the empirical application to the 3D panel gravity
model of the intra-EU trade.
At this stage, it seems appropriate to mention the number of obvious and

challenging extensions and generalisations. First, as discussed in Section 4, we
will address the number of extensions to the analysis of incomplete panel dataset
and 4D or higher dimensional models. Second, as an ongoing research, we de-
velop the general multi-dimensional heterogenous panel data models with hier-
archical multi-factor error structure (e.g. Kapetanios and Shin, 2017). Third,
our proposed approach can be easily extended to dynamic panels. Finally and
more importantly, we aim to develop the most challenging models by combining
both the spatial-based and the factor-based techniques within the 3D or higher
dimensional models. Bailey et al. (2016) develop the multi-step estimation pro-
cedure that can distinguish the relationship between spatial units that is purely
spatial from that which is due to the effect of common factors. Furthermore,
Mastromarco et al. (2016a) propose the technique for allowing weak and strong
CSD in modelling technical effi ciency of stochastic frontier panels by combin-
ing the exogenously driven factor-based approach and an endogenous threshold
regime selection by Kapetanios et al. (2014). Bai and Li (2015) and Shi and
Lee (2014,5) have developed the framework for jointly modelling spatial effects
and interactive effects. See also Gunnella et al. (2015) and Kuersteiner and
Prucha (2015). This is the most recent research trend, and thus the successful
development of the general combined approach within the multi-dimensional
panels may broaden its appeal further.

28



Reference
Abowd, J.M., F. Kramarz and D.N. Margolis (1999): “High Wage Workers

and High Wage Firms”, Econometrica 67: 251-333.
Anderson, J. and E. van Wincoop (2003): “Gravity with Gravitas: A Solu-

tion to the Border Puzzle,”American Economic Review 93: 170-92.
Bai, J. (2009): “Panel Data Models with Interactive Fixed Effects,”Econo-

metrica 77: 1229-1279.
Bai, J. and K. Li (2014): “Spatial Panel Data Models with Common Shocks,”

mimeo., Columbia University.
Bai, J. and K. Li (2015): “Dynamic Spatial Panel Data Models with Com-

mon Shocks,”mimeo., Columbia University.
Bai, J., Y. Liao and J. Yang (2015): “Unbalanced Panel Data Models with

Interactive Effects,”in The Oxford Handbook of Panel Data ed. by B.H. Baltagi.
Oxford University Press: New York, 149-170.
Baier, S.L. and J.H. Bergstrand (2007): “Do Free Trade Agreements Ac-

tually Increase Members International Trade?” Journal of International Eco-
nomics 71:72-95.
Bailey, N., S. Holly and M.H. Pesaran (2016): “A Two-Stage Approach to

Spatio-Temporal Analysis with Strong and Weak Cross-sectional Dependence,”
forthcoming in Journal of Applied Econometrics.
Bailey, N., G. Kapetanios and M.H. Pesaran (2016): “Exponent of Cross-

sectional Dependence: Estimation and Inference,” forthcoming in Journal of
Applied Econometrics.
Balazsi, L., M. Bun, F. Chan and M.N. Harris (2016): “Models with Endoge-

nous Regressors,”Chapter 3 in The Econometrics of Multi-dimensional Panels
ed. by L. Matyas. Springer: Berlin.
Balazsi, L., B.H. Baltagi, L. Matyas and D. Pus (2016): “Modelling Multi-

dimensional Panel Data: A Random Effects Approach”, mimeo., Central Euro-
pean University.
Balazsi, L., L. Matyas and T. Wansbeek (2015): “The Estimation of Multi-

dimensional Fixed Effects Panel Data Models”, forthcoming in Econometric
Reviews.

Baldwin, R.E. (2006): In or Out: Does it Matter? An Evidence-Based
Analysis of the Euro’s Trade Effects. Centre for Economic Policy Research.
Baldwin, R.E. and D. Taglioni (2006): “Gravity for Dummies and Dummies

for Gravity Equations,”NBER Working Paper 12516.
Baltagi B.H and G. Bresson (2016): “Modelling Housing Using Multi-dimensional

Panel Data,”Chapter 12 in The Econometrics of Multi-dimensional Panels ed.
by L. Matyas. Springer: Berlin.
Baltagi, B.H., P. Egger, P. and M. Pfaffermayr (2003): “A Generalized

Design for Bilateral Trade Flow Models,”Economics Letters 80: 391-397.
Baltagi, B.H., P. Egger, P. and M. Pfaffermayr (2015): “Panel Data Gravity

Models of International Trade,”in The Oxford Handbook of Panel Data ed. by
B.H. Baltagi. Oxford University Press: New York, 608-641.
Baltagi, B.H., P. Egger and K. Erhardt (2016): “The Estimation of Grav-

ity Models in International Trade,”Chapter 3 in The Econometrics of Multi-

29



dimensional Panels ed. by L. Matyas. Springer: Berlin.
Behrens, K., C. Ertur andW. Kock (2012): “Dual Gravity: Using Spa-

tial Econometrics to Control For Multilateral Resistance,” Journal of Applied
Econometrics 27: 773-794.
Bertoli, S. and J. Fernandez-Huertas Moraga (2013): “Multilateral Resis-

tance to Migration,”Journal of Development Economics 102: 79-100.
Chudik, A., M.H. Pesaran and E. Tosetti (2011): “Weak and Strong Cross-

section Dependence and Estimation of Large Panels,”Econometrics Journal 14:
45-90.
Davis, P. (2002): “Estimating Multi-way Error Components Models with

Unbalanced Data Structures,”Journal of Econometrics 106, 67-95.
De Nardis, S. and C. Vicarelli (2003): “Currency Unions and Trade: The

Special Case of EMU,”World Review of Economics 139: 625-49.
Feenstra, R.C. (2004): Advanced International Trade. Princeton University

Press: Princeton, NJ.
Frankel, J.A. (2008): “The Estimated Effects of the Euro on Trade: Why are

They below Historical Effects of Monetary Unions among Smaller Countries?”
NBER Working Paper 14542.
Frankel, J.A. and A.K. Rose (2002): “An Estimate of the Effect of Common

Currencies on Trade and Income,”Quarterly Journal of Economics 117: 437-
466.
Glick R. and A.K. Rose (2002): “Does a Currency Union Affect Trade? The

Time Series Evidence,”European Economic Review 46: 1125-1151.
Gunnella V., C. Mastromarco, L. Serlenga and Y. Shin (2015): “The Euro

Effects on Intra-EU Trade Flows and Balances: Evidence from the Cross Sec-
tionally Correlated Panel Gravity Models,”mimeo., University of York.
Hausman, J.A. and W.E. Taylor (1981): “Panel Data and Unobservable

Individual Effect,”Econometrica 49: 1377-1398.
Helpman, E. (1987): “Imperfect competition and international trade: ev-

idence from fourteen industrialized countries, ” Journal of the Japanese and
International Economies, 1: 62?81.
Herwartz, H. and H. Weber (2010): “The Euro’s Trade Effect under Cross-

sectional Heterogeneity and Stochastic Resistance”, Kiel Working Paper No.
1631, Kiel Institute for the World Economy, Germany.
Kapetanios, G. and M.H. Pesaran (2005): “Alternative Approaches to Esti-

mation and Inference in Large Multifactor Panels: Small Sample Results with
an Application to Modelling of Asset Returns,”, CESifo Working Paper Series
1416, CESifo Group Munich.
Kapetanios, G. and Y. Shin (2017): “Multi-dimensional Heterogeneous Panel

Data with Hierarchical Multi-factor Error Structure,” mimeo, University of
York.
Kramarz, F., S.J. Machin and A. Ouazad (2008): “What Makes a Test Score?

The Respective Contributions of Pupils, Schools, and Peers in Achievement in
English Primary Education,”INSEAD Working Paper.
Kuersteiner, G.M. and I.R. Prucha (2015): “Dynamic Spatial Panel Models:

Networks, Common Shocks, and Sequential Exogeneity,”mimeo., University of

30



Maryland.
Krugman, P.R. (1997): “Increasing Returns, Monopolistic Competition and

International Trade,”Journal of International Economics, 9: 469-479.
Le Gallo, J. and A. Pirotte (2016): “Models for Spatial Panels,”Chapter 9

in The Econometrics of Multi-dimensional Panels ed. by L. Matyas. Springer:
Berlin.
Mastromarco, C., L. Serlenga and Y. Shin (2016a): “Modelling Technical

Ineffi ciency in Cross Sectionally Dependent Stochastic Frontier Panels,”Journal
of Applied Econometrics 31, 281-297.
Mastromarco, C., L. Serlenga and Y. Shin, (2016b): “Multilateral Resistance

and Euro Effects on Trade Flows,”Spatial Econometric Interaction Modelling
eds. by G. Arbia and R. Patuelli. Springer: Berlin, 253-278.
Matyas, L. (1997): “Proper Econometric Specification of the Gravity Model,”

The World Economy 20: 363-369.
Mundlak, Y. (1978): “On the Pooling of Time Series and Cross Section

Data,”Econometrica 46, 69-85.
Pakko, M.R. and H.J. Wall (2002): “Reconsidering the Trade-creating Ef-

fects of a Currency Union,”Federal Reserve Bank of St Louis Review 83: 37-46.
Pesaran, M.H. (2006): “Estimation and Inference in Large Heterogeneous

Panels with a Multifactor Error Structure,”Econometrica 74: 967-1012.
Pesaran, M.H. (2015): “Testing Weak Cross-sectional Dependence in Large

Panels,”Econometric Reviews 34: 1089-1117.
Persson T. (2001): “Currency Union and Trade: How Large is the Treatment

Effect?” Economy Policy 33: 435-448.
Rose, A.K. (2001): “Currency Unions and Trade: The Effect is Large,”

Economic Policy 33: 449-61.
Serlenga, L. and Y. Shin (2007): “Gravity Models of Intra-EU Trade: Appli-

cation of the CCEP-HT Estimation in Heterogeneous Panels with Unobserved
Common Time-specific Factors,”Journal of Applied Econometrics 22: 361-381.
Shi, W. and L.F. Lee (2014): “Spatial Dynamic Panel Data Models with

Interactive Fixed Effects,”mimeo., Ohio State University.
Wooldridge, J.M. (2010): “Correlated Random Effects Models with Unbal-

anced Panels,”mimeo., Michigan State University.

31


